High-Throughput Sequencing Reveals Apple Virome Diversity and Novel Viruses in the Czech Republic

Apple viruses pose significant threat to global apple production. In this study, HTS technology was used to investigate the apple virome in the Czech Republic. Previously reported viruses, including ACLSV, ASPV, ASGV, ApMV, AGCaV, and CCGaV, were confirmed, and near-complete genomes were assembled....

Full description

Saved in:
Bibliographic Details
Main Authors: Karima Ben Mansour, Igor Koloniuk, Jana Brožová, Marcela Komínková, Jaroslava Přibylová, Tatiana Sarkisova, Jiří Sedlák, Josef Špak, Petr Komínek
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Viruses
Subjects:
Online Access:https://www.mdpi.com/1999-4915/17/5/650
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Apple viruses pose significant threat to global apple production. In this study, HTS technology was used to investigate the apple virome in the Czech Republic. Previously reported viruses, including ACLSV, ASPV, ASGV, ApMV, AGCaV, and CCGaV, were confirmed, and near-complete genomes were assembled. Additionally, two novel viruses, ARWV1 and ARWV2 were identified for the first time in the Czech Republic. Phylogenetic analyses showed low genetic variability among ARWV2 isolates, suggesting a possible recent introduction or limited diversification. In contrast, ARWV1 isolates displayed distinct clustering in the coat protein coding region, separating symptomatic and asymptomatic samples, indicating a potential involvement of genetic determinants in symptom expression. Mixed infections were prevalent, with multiple molecular variants of ACLSV, ASPV, and AGCaV detected within individual samples, along with co-infections involving viruses from different families. Recombination analysis identified frequent recombination events in ACLSV and ASPV, often involving non-apple parental sequences, suggesting their potential for cross-host infections. Additionally, an interspecific recombination event was detected in an almond ApMV isolate, with PNRSV as a minor parent. These findings highlight the impact of agricultural practices on viral evolution and host adaptation. This study demonstrates the utility of HTS as a powerful tool for uncovering viral diversity, recombination events, and evolutionary dynamics.
ISSN:1999-4915