Single-cell RNA-seq reveals disease-specific CD8+ T cell clonal expansion and a high frequency of transcriptionally distinct double-negative T cells in diabetic NOD mice.

T cells primarily drive the autoimmune destruction of pancreatic beta cells in Type 1 diabetes (T1D). However, the profound yet uncharacterized diversity of the T cell populations in vivo has hindered obtaining a clear picture of the T cell changes that occur longitudinally during T1D onset. This st...

Full description

Saved in:
Bibliographic Details
Main Authors: Md Zohorul Islam, Sam Zimmerman, Alexis Lindahl, Jon Weidanz, Jose Ordovas-Montanes, Aleksandar Kostic, Jacob Luber, Michael Robben
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0317987
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:T cells primarily drive the autoimmune destruction of pancreatic beta cells in Type 1 diabetes (T1D). However, the profound yet uncharacterized diversity of the T cell populations in vivo has hindered obtaining a clear picture of the T cell changes that occur longitudinally during T1D onset. This study aimed to identify T cell clonal expansion and distinct transcriptomic signatures associated with T1D progression in Non-Obese Diabetic (NOD) mice. Here we profiled the transcriptome and T cell receptor (TCR) repertoire of T cells at single-cell resolution from longitudinally collected peripheral blood and pancreatic islets of NOD mice using single-cell RNA sequencing technology. We detected disease dependent development of infiltrating CD8 + T cells with altered cytotoxic and inflammatory effector states. In addition, we discovered a high frequency of transcriptionally distinct double negative (DN) T cells that fluctuate throughout T1D pathogenesis. This study identifies potential disease relevant TCR sequences and potential disease biomarkers that can be further characterized through future research.
ISSN:1932-6203