Bone Segmentation in Low-Field Knee MRI Using a Three-Dimensional Convolutional Neural Network

Bone segmentation in magnetic resonance imaging (MRI) is crucial for clinical and research applications, including diagnosis, surgical planning, and treatment monitoring. However, it remains challenging due to anatomical variability and complex bone morphology. Manual segmentation is time-consuming...

Full description

Saved in:
Bibliographic Details
Main Authors: Ciro Listone, Diego Romano, Marco Lapegna
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Big Data and Cognitive Computing
Subjects:
Online Access:https://www.mdpi.com/2504-2289/9/6/146
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bone segmentation in magnetic resonance imaging (MRI) is crucial for clinical and research applications, including diagnosis, surgical planning, and treatment monitoring. However, it remains challenging due to anatomical variability and complex bone morphology. Manual segmentation is time-consuming and operator-dependent, fostering interest in automated methods. This study proposes an automated segmentation method based on a 3D U-Net convolutional neural network to segment the femur, tibia, and patella from low-field MRI scans. Low-field MRI offers advantages in cost, patient comfort, and accessibility but presents challenges related to lower signal quality. Our method achieved a Dice Similarity Coefficient (DSC) of 0.9838, Intersection over Union (IoU) of 0.9682, and Average Hausdorff Distance (AHD) of 0.0223, with an inference time of approximately 3.96 s per volume on a GPU. Although post-processing had minimal impact on metrics, it significantly enhanced the visual smoothness of bone surfaces, which is crucial for clinical use. The final segmentations enabled the creation of clean, 3D-printable bone models, beneficial for preoperative planning. These results demonstrate that the model achieves accurate segmentation with a high degree of overlap compared to manually segmented reference data. This accuracy results from meticulous fine-tuning of the network, along with the application of advanced data augmentation and post-processing techniques.
ISSN:2504-2289