On Legendre numbers of the second kind

The Legendre numbers of the second kind, an infinite set of rational numbers, are defined from the associated Legendre functions. An explicit formula and a partial table for these numbers are given and many elementary properties are presented. A connection is shown between Legendre numbers of the fi...

Full description

Saved in:
Bibliographic Details
Main Author: Paul W. Haggard
Format: Article
Language:English
Published: Wiley 1988-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171288000997
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Legendre numbers of the second kind, an infinite set of rational numbers, are defined from the associated Legendre functions. An explicit formula and a partial table for these numbers are given and many elementary properties are presented. A connection is shown between Legendre numbers of the first and second kinds. Extended Legendre numbers of the first and second kind are defined in a natural way and these are expressed in terms of those of the second and first kind, respectively. Two other sets of rational numbers are defined from the associated Legendre functions by taking derivatives and evaluating these at x=0. One of these sets is connected to Legendre numbers of the first find while the other is connected to Legendre numbers of the second kind. Some series are also discussed.
ISSN:0161-1712
1687-0425