Laguerre-type Bell polynomials

We develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result con...

Full description

Saved in:
Bibliographic Details
Main Authors: P. Natalini, P. E. Ricci
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/45423
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564117258371072
author P. Natalini
P. E. Ricci
author_facet P. Natalini
P. E. Ricci
author_sort P. Natalini
collection DOAJ
description We develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit relationships between Bessel functions and generalized hypergeometric functions.
format Article
id doaj-art-37cc54cbc9a940baa371e04563419e1f
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2006-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-37cc54cbc9a940baa371e04563419e1f2025-02-03T01:11:47ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252006-01-01200610.1155/IJMMS/2006/4542345423Laguerre-type Bell polynomialsP. Natalini0P. E. Ricci1Dipartimento di Matematica, Università di Roma Tre, Largo S. Leonardo Murialdo 1, Roma 00146, ItalyDipartimento di Matematica, Università delgi Studi di Roma “La Sapienza,“, P. le Aldo Moro 2, Roma 00185, ItalyWe develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit relationships between Bessel functions and generalized hypergeometric functions.http://dx.doi.org/10.1155/IJMMS/2006/45423
spellingShingle P. Natalini
P. E. Ricci
Laguerre-type Bell polynomials
International Journal of Mathematics and Mathematical Sciences
title Laguerre-type Bell polynomials
title_full Laguerre-type Bell polynomials
title_fullStr Laguerre-type Bell polynomials
title_full_unstemmed Laguerre-type Bell polynomials
title_short Laguerre-type Bell polynomials
title_sort laguerre type bell polynomials
url http://dx.doi.org/10.1155/IJMMS/2006/45423
work_keys_str_mv AT pnatalini laguerretypebellpolynomials
AT pericci laguerretypebellpolynomials