Laguerre-type Bell polynomials
We develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result con...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2006-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/IJMMS/2006/45423 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832564117258371072 |
---|---|
author | P. Natalini P. E. Ricci |
author_facet | P. Natalini P. E. Ricci |
author_sort | P. Natalini |
collection | DOAJ |
description | We develop an extension of the classical Bell polynomials
introducing the Laguerre-type version of this well-known
mathematical tool. The Laguerre-type Bell polynomials are useful
in order to compute the nth Laguerre-type derivatives of a
composite function. Incidentally, we generalize a result
considered by L. Carlitz in order to obtain explicit relationships
between Bessel functions and generalized hypergeometric functions. |
format | Article |
id | doaj-art-37cc54cbc9a940baa371e04563419e1f |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2006-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-37cc54cbc9a940baa371e04563419e1f2025-02-03T01:11:47ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252006-01-01200610.1155/IJMMS/2006/4542345423Laguerre-type Bell polynomialsP. Natalini0P. E. Ricci1Dipartimento di Matematica, Università di Roma Tre, Largo S. Leonardo Murialdo 1, Roma 00146, ItalyDipartimento di Matematica, Università delgi Studi di Roma “La Sapienza,“, P. le Aldo Moro 2, Roma 00185, ItalyWe develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit relationships between Bessel functions and generalized hypergeometric functions.http://dx.doi.org/10.1155/IJMMS/2006/45423 |
spellingShingle | P. Natalini P. E. Ricci Laguerre-type Bell polynomials International Journal of Mathematics and Mathematical Sciences |
title | Laguerre-type Bell polynomials |
title_full | Laguerre-type Bell polynomials |
title_fullStr | Laguerre-type Bell polynomials |
title_full_unstemmed | Laguerre-type Bell polynomials |
title_short | Laguerre-type Bell polynomials |
title_sort | laguerre type bell polynomials |
url | http://dx.doi.org/10.1155/IJMMS/2006/45423 |
work_keys_str_mv | AT pnatalini laguerretypebellpolynomials AT pericci laguerretypebellpolynomials |