An Improved King–Werner-Type Method Based on Cubic Interpolation: Convergence Analysis and Complex Dynamics

In this paper, we study the convergence and complex dynamics of a novel higher-order multipoint iteration scheme to solve nonlinear equations. The approach is based upon utilizing cubic interpolation in the second step of the King–Werner method to improve its convergence order from <inline-formul...

Full description

Saved in:
Bibliographic Details
Main Authors: Moin-ud-Din Junjua, Ibraheem M. Alsulami, Amer Alsulami, Sangeeta Kumari
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/5/360
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849711770317357056
author Moin-ud-Din Junjua
Ibraheem M. Alsulami
Amer Alsulami
Sangeeta Kumari
author_facet Moin-ud-Din Junjua
Ibraheem M. Alsulami
Amer Alsulami
Sangeeta Kumari
author_sort Moin-ud-Din Junjua
collection DOAJ
description In this paper, we study the convergence and complex dynamics of a novel higher-order multipoint iteration scheme to solve nonlinear equations. The approach is based upon utilizing cubic interpolation in the second step of the King–Werner method to improve its convergence order from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.414</mn></mrow></semantics></math></inline-formula> to 3 and the efficiency index from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.554</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.732</mn></mrow></semantics></math></inline-formula>, which is higher than the efficiency of optimal fourth- and eighth-order iterative schemes. The proposed method is validated through numerical and dynamic experiments concerning the absolute error, approximated computational order, regions of convergence, and CPU time (sec) on the real-world problems, including Kepler’s equation, isentropic supersonic flow, and law of population growth, demonstrating superior performance compared to some existing well-known methods. Commonly, regions of convergence of iterative methods are investigated and compared by plotting attractor basins of iteration schemes in the complex plane on polynomial functions of the type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>z</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>. However, in this paper, the attractor basins of the proposed method are investigated on diverse nonlinear functions. The proposed scheme creates portraits of basins of attraction faster with wider convergence areas outperforming existing well-known iteration schemes.
format Article
id doaj-art-37a62b2f84d645508f475cbbed6893bd
institution DOAJ
issn 2075-1680
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-37a62b2f84d645508f475cbbed6893bd2025-08-20T03:14:32ZengMDPI AGAxioms2075-16802025-05-0114536010.3390/axioms14050360An Improved King–Werner-Type Method Based on Cubic Interpolation: Convergence Analysis and Complex DynamicsMoin-ud-Din Junjua0Ibraheem M. Alsulami1Amer Alsulami2Sangeeta Kumari3School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, ChinaMathematics Department, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi ArabiaDepartment of Mathematics, Turabah University College, Taif University, Taif 21944, Saudi ArabiaDepartment of Mathematics, Chandigarh University, Gharuan, Mohali 140301, IndiaIn this paper, we study the convergence and complex dynamics of a novel higher-order multipoint iteration scheme to solve nonlinear equations. The approach is based upon utilizing cubic interpolation in the second step of the King–Werner method to improve its convergence order from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.414</mn></mrow></semantics></math></inline-formula> to 3 and the efficiency index from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.554</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.732</mn></mrow></semantics></math></inline-formula>, which is higher than the efficiency of optimal fourth- and eighth-order iterative schemes. The proposed method is validated through numerical and dynamic experiments concerning the absolute error, approximated computational order, regions of convergence, and CPU time (sec) on the real-world problems, including Kepler’s equation, isentropic supersonic flow, and law of population growth, demonstrating superior performance compared to some existing well-known methods. Commonly, regions of convergence of iterative methods are investigated and compared by plotting attractor basins of iteration schemes in the complex plane on polynomial functions of the type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>z</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>. However, in this paper, the attractor basins of the proposed method are investigated on diverse nonlinear functions. The proposed scheme creates portraits of basins of attraction faster with wider convergence areas outperforming existing well-known iteration schemes.https://www.mdpi.com/2075-1680/14/5/360nonlinear equationsKing–Werner type methodR-order of convergenceefficiency indexcomplex dynamics
spellingShingle Moin-ud-Din Junjua
Ibraheem M. Alsulami
Amer Alsulami
Sangeeta Kumari
An Improved King–Werner-Type Method Based on Cubic Interpolation: Convergence Analysis and Complex Dynamics
Axioms
nonlinear equations
King–Werner type method
R-order of convergence
efficiency index
complex dynamics
title An Improved King–Werner-Type Method Based on Cubic Interpolation: Convergence Analysis and Complex Dynamics
title_full An Improved King–Werner-Type Method Based on Cubic Interpolation: Convergence Analysis and Complex Dynamics
title_fullStr An Improved King–Werner-Type Method Based on Cubic Interpolation: Convergence Analysis and Complex Dynamics
title_full_unstemmed An Improved King–Werner-Type Method Based on Cubic Interpolation: Convergence Analysis and Complex Dynamics
title_short An Improved King–Werner-Type Method Based on Cubic Interpolation: Convergence Analysis and Complex Dynamics
title_sort improved king werner type method based on cubic interpolation convergence analysis and complex dynamics
topic nonlinear equations
King–Werner type method
R-order of convergence
efficiency index
complex dynamics
url https://www.mdpi.com/2075-1680/14/5/360
work_keys_str_mv AT moinuddinjunjua animprovedkingwernertypemethodbasedoncubicinterpolationconvergenceanalysisandcomplexdynamics
AT ibraheemmalsulami animprovedkingwernertypemethodbasedoncubicinterpolationconvergenceanalysisandcomplexdynamics
AT ameralsulami animprovedkingwernertypemethodbasedoncubicinterpolationconvergenceanalysisandcomplexdynamics
AT sangeetakumari animprovedkingwernertypemethodbasedoncubicinterpolationconvergenceanalysisandcomplexdynamics
AT moinuddinjunjua improvedkingwernertypemethodbasedoncubicinterpolationconvergenceanalysisandcomplexdynamics
AT ibraheemmalsulami improvedkingwernertypemethodbasedoncubicinterpolationconvergenceanalysisandcomplexdynamics
AT ameralsulami improvedkingwernertypemethodbasedoncubicinterpolationconvergenceanalysisandcomplexdynamics
AT sangeetakumari improvedkingwernertypemethodbasedoncubicinterpolationconvergenceanalysisandcomplexdynamics