Timing-Skew Calibration Techniques in Time-Interleaved ADCs

Time-interleaved (TI) analog-to-digital converters (ADCs) are a widely used architecture in high-speed ADCs. With the growing demand for higher sampling rates, time interleaving plays an increasingly important role. However, imperfections introduced by time interleaving, particularly timing skew, si...

Full description

Saved in:
Bibliographic Details
Main Authors: Mingyang Gu, Yunsong Tao, Yi Zhong, Lu Jie, Nan Sun
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Open Journal of the Solid-State Circuits Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10804623/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time-interleaved (TI) analog-to-digital converters (ADCs) are a widely used architecture in high-speed ADCs. With the growing demand for higher sampling rates, time interleaving plays an increasingly important role. However, imperfections introduced by time interleaving, particularly timing skew, significantly limit the ADC performance. This article presents a comprehensive review of timing skew and its calibration techniques in TI ADCs. It covers the fundamentals of time interleaving, the principle of timing skew, and general considerations of timing-skew calibration. Moreover, it categorizes existing calibration techniques into three types: 1) autocorrelation-based; 2) reference-channel-based; and 3) reference-signal-based, and provides detailed analyses.
ISSN:2644-1349