Hölder Regularity of Quasiminimizers to Generalized Orlicz Functional on the Heisenberg Group

In this paper, we apply De Giorgi-Moser iteration to establish the Hölder regularity of quasiminimizers to generalized Orlicz functional on the Heisenberg group by using the Riesz potential, maximal function, Calderón-Zygmund decomposition, and covering Lemma on the context of the Heisenberg Group....

Full description

Saved in:
Bibliographic Details
Main Authors: Junli Zhang, Pengcheng Niu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2020/8838654
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849693143396515840
author Junli Zhang
Pengcheng Niu
author_facet Junli Zhang
Pengcheng Niu
author_sort Junli Zhang
collection DOAJ
description In this paper, we apply De Giorgi-Moser iteration to establish the Hölder regularity of quasiminimizers to generalized Orlicz functional on the Heisenberg group by using the Riesz potential, maximal function, Calderón-Zygmund decomposition, and covering Lemma on the context of the Heisenberg Group. The functional includes the p-Laplace functional on the Heisenberg group which has been studied and the variable exponential functional and the double phase growth functional on the Heisenberg group that have not been studied.
format Article
id doaj-art-378d1d2c40ca49bfadeb59d5e3c9696a
institution DOAJ
issn 2314-8896
2314-8888
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-378d1d2c40ca49bfadeb59d5e3c9696a2025-08-20T03:20:30ZengWileyJournal of Function Spaces2314-88962314-88882020-01-01202010.1155/2020/88386548838654Hölder Regularity of Quasiminimizers to Generalized Orlicz Functional on the Heisenberg GroupJunli Zhang0Pengcheng Niu1School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, ChinaSchool of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, ChinaIn this paper, we apply De Giorgi-Moser iteration to establish the Hölder regularity of quasiminimizers to generalized Orlicz functional on the Heisenberg group by using the Riesz potential, maximal function, Calderón-Zygmund decomposition, and covering Lemma on the context of the Heisenberg Group. The functional includes the p-Laplace functional on the Heisenberg group which has been studied and the variable exponential functional and the double phase growth functional on the Heisenberg group that have not been studied.http://dx.doi.org/10.1155/2020/8838654
spellingShingle Junli Zhang
Pengcheng Niu
Hölder Regularity of Quasiminimizers to Generalized Orlicz Functional on the Heisenberg Group
Journal of Function Spaces
title Hölder Regularity of Quasiminimizers to Generalized Orlicz Functional on the Heisenberg Group
title_full Hölder Regularity of Quasiminimizers to Generalized Orlicz Functional on the Heisenberg Group
title_fullStr Hölder Regularity of Quasiminimizers to Generalized Orlicz Functional on the Heisenberg Group
title_full_unstemmed Hölder Regularity of Quasiminimizers to Generalized Orlicz Functional on the Heisenberg Group
title_short Hölder Regularity of Quasiminimizers to Generalized Orlicz Functional on the Heisenberg Group
title_sort holder regularity of quasiminimizers to generalized orlicz functional on the heisenberg group
url http://dx.doi.org/10.1155/2020/8838654
work_keys_str_mv AT junlizhang holderregularityofquasiminimizerstogeneralizedorliczfunctionalontheheisenberggroup
AT pengchengniu holderregularityofquasiminimizerstogeneralizedorliczfunctionalontheheisenberggroup