Spatial Heterogeneity of Intratumoral Microbiota: A New Frontier in Cancer Immunotherapy Resistance
The intratumoral microbiota, as an important component of the tumor microenvironment, is increasingly recognized as a key factor in regulating responses to cancer immunotherapy. Recent studies have revealed that the intratumoral microbiota is not uniformly distributed but instead exhibits significan...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Biomedicines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-9059/13/5/1261 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The intratumoral microbiota, as an important component of the tumor microenvironment, is increasingly recognized as a key factor in regulating responses to cancer immunotherapy. Recent studies have revealed that the intratumoral microbiota is not uniformly distributed but instead exhibits significant spatial heterogeneity, with its distribution patterns influenced by factors such as tumor anatomy, local immune status, and therapeutic interventions. This spatial heterogeneity not only alters the interactions between microbes and the host immune system but may also reshape the immunogenic and immunosuppressive landscapes of tumors. The enrichment or depletion of microbiota in different tumor regions can influence immune cell infiltration patterns, metabolic pathway activities, and immune checkpoint molecule expression, thereby driving the development of resistance to immunotherapy. Moreover, certain bacterial metabolites form concentration gradients between the tumor core and margins, thereby regulating immune cell function. Therefore, understanding and manipulating the spatial distribution of intratumoral microbiota, particularly in resistant patients, holds promise for developing new strategies to overcome immunotherapy resistance. In the future, precise modulation strategies targeting microbial spatial heterogeneity, such as engineered bacterial vectors, probiotic combinations, and phage therapy, may open new avenues for immunotherapy. |
|---|---|
| ISSN: | 2227-9059 |