Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations

Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations to investigate water flow in tw...

Full description

Saved in:
Bibliographic Details
Main Authors: Peng Zhou, Junyao Bao, Shiyuan Zhan, Xingjian Wang, Shaopeng Li, Baofeng Lan, Zhanbo Liu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/12/896
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849432257870168064
author Peng Zhou
Junyao Bao
Shiyuan Zhan
Xingjian Wang
Shaopeng Li
Baofeng Lan
Zhanbo Liu
author_facet Peng Zhou
Junyao Bao
Shiyuan Zhan
Xingjian Wang
Shaopeng Li
Baofeng Lan
Zhanbo Liu
author_sort Peng Zhou
collection DOAJ
description Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations to investigate water flow in two different quartz surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula>) nanopores. Results show that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula> surface exhibits stronger water molecule structuring with a structure arranged in two layers and higher first-layer adsorption density (2.44 g/cm<sup>3</sup>) compared to the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> surface (1.68 g/cm³). The flow flux under the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> surface is approximately 1.2 times higher than that under the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula> surface across various pressure gradients. We developed a theoretical model dividing the pore space into non-flowing, adsorbed, and bulk water regions, with critical thicknesses of 0.14 nm and 0.27 nm for the non-flowing region, and 0.15 nm for the adsorbed region in both surfaces. This model effectively predicts velocity distributions and volumetric flow rates with errors generally below 5%. Our findings provide insights into water transport mechanisms in shale inorganic nanopores and offer practical guidance for numerical simulation of shale gas production through dewatering operations.
format Article
id doaj-art-37448109f7ae414aabd334c857bb77f7
institution Kabale University
issn 2079-4991
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj-art-37448109f7ae414aabd334c857bb77f72025-08-20T03:27:25ZengMDPI AGNanomaterials2079-49912025-06-01151289610.3390/nano15120896Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics SimulationsPeng Zhou0Junyao Bao1Shiyuan Zhan2Xingjian Wang3Shaopeng Li4Baofeng Lan5Zhanbo Liu6State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaGuizhou Energy Industry Research Institute Co., Guiyang 550025, ChinaGuizhou Energy Industry Research Institute Co., Guiyang 550025, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaDewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations to investigate water flow in two different quartz surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula>) nanopores. Results show that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula> surface exhibits stronger water molecule structuring with a structure arranged in two layers and higher first-layer adsorption density (2.44 g/cm<sup>3</sup>) compared to the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> surface (1.68 g/cm³). The flow flux under the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> surface is approximately 1.2 times higher than that under the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula> surface across various pressure gradients. We developed a theoretical model dividing the pore space into non-flowing, adsorbed, and bulk water regions, with critical thicknesses of 0.14 nm and 0.27 nm for the non-flowing region, and 0.15 nm for the adsorbed region in both surfaces. This model effectively predicts velocity distributions and volumetric flow rates with errors generally below 5%. Our findings provide insights into water transport mechanisms in shale inorganic nanopores and offer practical guidance for numerical simulation of shale gas production through dewatering operations.https://www.mdpi.com/2079-4991/15/12/896molecular dynamics simulationquartz surfacewater flownanoporeanalytical model
spellingShingle Peng Zhou
Junyao Bao
Shiyuan Zhan
Xingjian Wang
Shaopeng Li
Baofeng Lan
Zhanbo Liu
Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations
Nanomaterials
molecular dynamics simulation
quartz surface
water flow
nanopore
analytical model
title Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations
title_full Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations
title_fullStr Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations
title_full_unstemmed Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations
title_short Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations
title_sort comparative study of water flow in nanopores with different quartz inline formula math display inline semantics mrow mrow mo stretchy false mo mn 10 mn mover mn 1 mn mo ¯ mo mover mn 0 mn mo stretchy false mo mrow mrow semantics math inline formula surfaces via molecular dynamics simulations
topic molecular dynamics simulation
quartz surface
water flow
nanopore
analytical model
url https://www.mdpi.com/2079-4991/15/12/896
work_keys_str_mv AT pengzhou comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations
AT junyaobao comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations
AT shiyuanzhan comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations
AT xingjianwang comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations
AT shaopengli comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations
AT baofenglan comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations
AT zhanboliu comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations