Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations
Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations to investigate water flow in tw...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/15/12/896 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849432257870168064 |
|---|---|
| author | Peng Zhou Junyao Bao Shiyuan Zhan Xingjian Wang Shaopeng Li Baofeng Lan Zhanbo Liu |
| author_facet | Peng Zhou Junyao Bao Shiyuan Zhan Xingjian Wang Shaopeng Li Baofeng Lan Zhanbo Liu |
| author_sort | Peng Zhou |
| collection | DOAJ |
| description | Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations to investigate water flow in two different quartz surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula>) nanopores. Results show that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula> surface exhibits stronger water molecule structuring with a structure arranged in two layers and higher first-layer adsorption density (2.44 g/cm<sup>3</sup>) compared to the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> surface (1.68 g/cm³). The flow flux under the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> surface is approximately 1.2 times higher than that under the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula> surface across various pressure gradients. We developed a theoretical model dividing the pore space into non-flowing, adsorbed, and bulk water regions, with critical thicknesses of 0.14 nm and 0.27 nm for the non-flowing region, and 0.15 nm for the adsorbed region in both surfaces. This model effectively predicts velocity distributions and volumetric flow rates with errors generally below 5%. Our findings provide insights into water transport mechanisms in shale inorganic nanopores and offer practical guidance for numerical simulation of shale gas production through dewatering operations. |
| format | Article |
| id | doaj-art-37448109f7ae414aabd334c857bb77f7 |
| institution | Kabale University |
| issn | 2079-4991 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Nanomaterials |
| spelling | doaj-art-37448109f7ae414aabd334c857bb77f72025-08-20T03:27:25ZengMDPI AGNanomaterials2079-49912025-06-01151289610.3390/nano15120896Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics SimulationsPeng Zhou0Junyao Bao1Shiyuan Zhan2Xingjian Wang3Shaopeng Li4Baofeng Lan5Zhanbo Liu6State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaGuizhou Energy Industry Research Institute Co., Guiyang 550025, ChinaGuizhou Energy Industry Research Institute Co., Guiyang 550025, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaDewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations to investigate water flow in two different quartz surface (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula>) nanopores. Results show that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula> surface exhibits stronger water molecule structuring with a structure arranged in two layers and higher first-layer adsorption density (2.44 g/cm<sup>3</sup>) compared to the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> surface (1.68 g/cm³). The flow flux under the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>α</mi></mrow></mrow></semantics></math></inline-formula> surface is approximately 1.2 times higher than that under the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo><mtext>-</mtext><mi>β</mi></mrow></mrow></semantics></math></inline-formula> surface across various pressure gradients. We developed a theoretical model dividing the pore space into non-flowing, adsorbed, and bulk water regions, with critical thicknesses of 0.14 nm and 0.27 nm for the non-flowing region, and 0.15 nm for the adsorbed region in both surfaces. This model effectively predicts velocity distributions and volumetric flow rates with errors generally below 5%. Our findings provide insights into water transport mechanisms in shale inorganic nanopores and offer practical guidance for numerical simulation of shale gas production through dewatering operations.https://www.mdpi.com/2079-4991/15/12/896molecular dynamics simulationquartz surfacewater flownanoporeanalytical model |
| spellingShingle | Peng Zhou Junyao Bao Shiyuan Zhan Xingjian Wang Shaopeng Li Baofeng Lan Zhanbo Liu Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations Nanomaterials molecular dynamics simulation quartz surface water flow nanopore analytical model |
| title | Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations |
| title_full | Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations |
| title_fullStr | Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations |
| title_full_unstemmed | Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations |
| title_short | Comparative Study of Water Flow in Nanopores with Different Quartz <inline-formula><math display="inline"><semantics><mrow><mrow><mo stretchy="false">(</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> Surfaces via Molecular Dynamics Simulations |
| title_sort | comparative study of water flow in nanopores with different quartz inline formula math display inline semantics mrow mrow mo stretchy false mo mn 10 mn mover mn 1 mn mo ¯ mo mover mn 0 mn mo stretchy false mo mrow mrow semantics math inline formula surfaces via molecular dynamics simulations |
| topic | molecular dynamics simulation quartz surface water flow nanopore analytical model |
| url | https://www.mdpi.com/2079-4991/15/12/896 |
| work_keys_str_mv | AT pengzhou comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations AT junyaobao comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations AT shiyuanzhan comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations AT xingjianwang comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations AT shaopengli comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations AT baofenglan comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations AT zhanboliu comparativestudyofwaterflowinnanoporeswithdifferentquartzinlineformulamathdisplayinlinesemanticsmrowmrowmostretchyfalsemomn10mnmovermn1mnmomomovermn0mnmostretchyfalsemomrowmrowsemanticsmathinlineformulasurfacesviamoleculardynamicssimulations |