mKdV Equation on Time Scales: Darboux Transformation and <i>N</i>-Soliton Solutions

In this paper, the spectral problem of the mKdV equation satisfying the compatibility condition on time scales is directly constructed. By using the zero-curvature equation on time scales, the mKdV equation on time scales is obtained. When <inline-formula><math xmlns="http://www.w3.org...

Full description

Saved in:
Bibliographic Details
Main Authors: Baojian Jin, Yong Fang, Xue Sang
Format: Article
Language:English
Published: MDPI AG 2024-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/9/578
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850258416807706624
author Baojian Jin
Yong Fang
Xue Sang
author_facet Baojian Jin
Yong Fang
Xue Sang
author_sort Baojian Jin
collection DOAJ
description In this paper, the spectral problem of the mKdV equation satisfying the compatibility condition on time scales is directly constructed. By using the zero-curvature equation on time scales, the mKdV equation on time scales is obtained. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, the equation degenerates to the classical mKdV equation. Then, the single-soliton, two-soliton, and <i>N</i>-soliton solutions of the mKdV equation under the zero boundary condition on time scales are presented via employing the Darboux transformation (DT). Particularly, we obtain the corresponding single-soliton solutions expressed using the Cayley exponential function on four different time scales (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Z</mi></semantics></math></inline-formula>, <i>q</i>-discrete, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">C</mi></semantics></math></inline-formula>).
format Article
id doaj-art-3715adef3d6045629acdb8db3cd3cd63
institution OA Journals
issn 2075-1680
language English
publishDate 2024-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-3715adef3d6045629acdb8db3cd3cd632025-08-20T01:56:10ZengMDPI AGAxioms2075-16802024-08-0113957810.3390/axioms13090578mKdV Equation on Time Scales: Darboux Transformation and <i>N</i>-Soliton SolutionsBaojian Jin0Yong Fang1Xue Sang2College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, ChinaCollege of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, ChinaCollege of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, ChinaIn this paper, the spectral problem of the mKdV equation satisfying the compatibility condition on time scales is directly constructed. By using the zero-curvature equation on time scales, the mKdV equation on time scales is obtained. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, the equation degenerates to the classical mKdV equation. Then, the single-soliton, two-soliton, and <i>N</i>-soliton solutions of the mKdV equation under the zero boundary condition on time scales are presented via employing the Darboux transformation (DT). Particularly, we obtain the corresponding single-soliton solutions expressed using the Cayley exponential function on four different time scales (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Z</mi></semantics></math></inline-formula>, <i>q</i>-discrete, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">C</mi></semantics></math></inline-formula>).https://www.mdpi.com/2075-1680/13/9/578modified Korteweg–de Vries equationtime scalesCayley exponential functionDarboux transformation
spellingShingle Baojian Jin
Yong Fang
Xue Sang
mKdV Equation on Time Scales: Darboux Transformation and <i>N</i>-Soliton Solutions
Axioms
modified Korteweg–de Vries equation
time scales
Cayley exponential function
Darboux transformation
title mKdV Equation on Time Scales: Darboux Transformation and <i>N</i>-Soliton Solutions
title_full mKdV Equation on Time Scales: Darboux Transformation and <i>N</i>-Soliton Solutions
title_fullStr mKdV Equation on Time Scales: Darboux Transformation and <i>N</i>-Soliton Solutions
title_full_unstemmed mKdV Equation on Time Scales: Darboux Transformation and <i>N</i>-Soliton Solutions
title_short mKdV Equation on Time Scales: Darboux Transformation and <i>N</i>-Soliton Solutions
title_sort mkdv equation on time scales darboux transformation and i n i soliton solutions
topic modified Korteweg–de Vries equation
time scales
Cayley exponential function
Darboux transformation
url https://www.mdpi.com/2075-1680/13/9/578
work_keys_str_mv AT baojianjin mkdvequationontimescalesdarbouxtransformationandinisolitonsolutions
AT yongfang mkdvequationontimescalesdarbouxtransformationandinisolitonsolutions
AT xuesang mkdvequationontimescalesdarbouxtransformationandinisolitonsolutions