Sterol‐Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory‐Competent Clones of the Industrial Yeast Saccharomyces cerevisiae

ABSTRACT Sterol composition plays a crucial role in determining the ability of yeast cells to withstand high temperatures, an essential trait in biotechnology. Using a targeted evolution strategy involving fluconazole (FCNZ), an inhibitor of the sterol biosynthesis pathway, and the immunosuppressant...

Full description

Saved in:
Bibliographic Details
Main Authors: Isabel‐Elena Sánchez‐Adriá, Jose A. Prieto, Gemma Sanmartín, Miguel Morard, Estéfani García‐Ríos, Francisco Estruch, Francisca Randez‐Gil
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Microbial Biotechnology
Subjects:
Online Access:https://doi.org/10.1111/1751-7915.70092
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832576328558182400
author Isabel‐Elena Sánchez‐Adriá
Jose A. Prieto
Gemma Sanmartín
Miguel Morard
Estéfani García‐Ríos
Francisco Estruch
Francisca Randez‐Gil
author_facet Isabel‐Elena Sánchez‐Adriá
Jose A. Prieto
Gemma Sanmartín
Miguel Morard
Estéfani García‐Ríos
Francisco Estruch
Francisca Randez‐Gil
author_sort Isabel‐Elena Sánchez‐Adriá
collection DOAJ
description ABSTRACT Sterol composition plays a crucial role in determining the ability of yeast cells to withstand high temperatures, an essential trait in biotechnology. Using a targeted evolution strategy involving fluconazole (FCNZ), an inhibitor of the sterol biosynthesis pathway, and the immunosuppressant FK506, we aimed to enhance thermotolerance in an industrial baker's yeast population by modifying their sterol composition. This approach yielded six isolates capable of proliferating in liquid YPD with μmax values ranging from 0.072 to 0.236 h−1 at 41.5°C, a temperature that completely inhibits the growth of the parental strain. The clones were categorised into two groups based on their respiratory competence or deficiency, the latter associated with mtDNA loss, an event seemingly linked to FCNZ and heat tolerance. Genome sequencing and ploidy‐level analysis of all strains revealed aneuploidies, copy number variations (CNVs), and single nucleotide polymorphisms (SNPs). Notably, all evolved clones exhibited specific point mutations in MPM1 (P50S) and PDR1 (F749S). CRISPR‐Cas9 experiments confirmed the role of the pdr1F749S mutation in the FCNZ‐tolerance phenotype and demonstrated that Mpm1 is required for growth at high temperatures. However, no apparent heat tolerance benefit was observed from single or combined mutations in these genes, supporting the hypothesis that thermotolerance is mediated by multiple interacting mechanisms. In this context, all evolved clones exhibited altered sterol profiles, with differences observed between respiratory‐competent and ‐deficient strains. In conclusion, our experimental evolution generated thermotolerant and fully competent strains and identified factors that could influence fluconazole and heat growth.
format Article
id doaj-art-370dfed6e03e4690aef2b8f364107c88
institution Kabale University
issn 1751-7915
language English
publishDate 2025-01-01
publisher Wiley
record_format Article
series Microbial Biotechnology
spelling doaj-art-370dfed6e03e4690aef2b8f364107c882025-01-31T06:26:35ZengWileyMicrobial Biotechnology1751-79152025-01-01181n/an/a10.1111/1751-7915.70092Sterol‐Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory‐Competent Clones of the Industrial Yeast Saccharomyces cerevisiaeIsabel‐Elena Sánchez‐Adriá0Jose A. Prieto1Gemma Sanmartín2Miguel Morard3Estéfani García‐Ríos4Francisco Estruch5Francisca Randez‐Gil6Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos Consejo Superior de Investigaciones Científicas Paterna Valencia SpainDepartment of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos Consejo Superior de Investigaciones Científicas Paterna Valencia SpainDepartment of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos Consejo Superior de Investigaciones Científicas Paterna Valencia SpainDepartment of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos Consejo Superior de Investigaciones Científicas Paterna Valencia SpainDepartment of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos Consejo Superior de Investigaciones Científicas Paterna Valencia SpainDepartament of Biochemistry and Molecular Biology Universitat de València Burjassot Valencia SpainDepartment of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos Consejo Superior de Investigaciones Científicas Paterna Valencia SpainABSTRACT Sterol composition plays a crucial role in determining the ability of yeast cells to withstand high temperatures, an essential trait in biotechnology. Using a targeted evolution strategy involving fluconazole (FCNZ), an inhibitor of the sterol biosynthesis pathway, and the immunosuppressant FK506, we aimed to enhance thermotolerance in an industrial baker's yeast population by modifying their sterol composition. This approach yielded six isolates capable of proliferating in liquid YPD with μmax values ranging from 0.072 to 0.236 h−1 at 41.5°C, a temperature that completely inhibits the growth of the parental strain. The clones were categorised into two groups based on their respiratory competence or deficiency, the latter associated with mtDNA loss, an event seemingly linked to FCNZ and heat tolerance. Genome sequencing and ploidy‐level analysis of all strains revealed aneuploidies, copy number variations (CNVs), and single nucleotide polymorphisms (SNPs). Notably, all evolved clones exhibited specific point mutations in MPM1 (P50S) and PDR1 (F749S). CRISPR‐Cas9 experiments confirmed the role of the pdr1F749S mutation in the FCNZ‐tolerance phenotype and demonstrated that Mpm1 is required for growth at high temperatures. However, no apparent heat tolerance benefit was observed from single or combined mutations in these genes, supporting the hypothesis that thermotolerance is mediated by multiple interacting mechanisms. In this context, all evolved clones exhibited altered sterol profiles, with differences observed between respiratory‐competent and ‐deficient strains. In conclusion, our experimental evolution generated thermotolerant and fully competent strains and identified factors that could influence fluconazole and heat growth.https://doi.org/10.1111/1751-7915.70092FK506fluconazoleheat stressindustrial baker's yeastMPM1mtDNA
spellingShingle Isabel‐Elena Sánchez‐Adriá
Jose A. Prieto
Gemma Sanmartín
Miguel Morard
Estéfani García‐Ríos
Francisco Estruch
Francisca Randez‐Gil
Sterol‐Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory‐Competent Clones of the Industrial Yeast Saccharomyces cerevisiae
Microbial Biotechnology
FK506
fluconazole
heat stress
industrial baker's yeast
MPM1
mtDNA
title Sterol‐Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory‐Competent Clones of the Industrial Yeast Saccharomyces cerevisiae
title_full Sterol‐Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory‐Competent Clones of the Industrial Yeast Saccharomyces cerevisiae
title_fullStr Sterol‐Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory‐Competent Clones of the Industrial Yeast Saccharomyces cerevisiae
title_full_unstemmed Sterol‐Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory‐Competent Clones of the Industrial Yeast Saccharomyces cerevisiae
title_short Sterol‐Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory‐Competent Clones of the Industrial Yeast Saccharomyces cerevisiae
title_sort sterol targeted laboratory evolution allows the isolation of thermotolerant and respiratory competent clones of the industrial yeast saccharomyces cerevisiae
topic FK506
fluconazole
heat stress
industrial baker's yeast
MPM1
mtDNA
url https://doi.org/10.1111/1751-7915.70092
work_keys_str_mv AT isabelelenasanchezadria steroltargetedlaboratoryevolutionallowstheisolationofthermotolerantandrespiratorycompetentclonesoftheindustrialyeastsaccharomycescerevisiae
AT joseaprieto steroltargetedlaboratoryevolutionallowstheisolationofthermotolerantandrespiratorycompetentclonesoftheindustrialyeastsaccharomycescerevisiae
AT gemmasanmartin steroltargetedlaboratoryevolutionallowstheisolationofthermotolerantandrespiratorycompetentclonesoftheindustrialyeastsaccharomycescerevisiae
AT miguelmorard steroltargetedlaboratoryevolutionallowstheisolationofthermotolerantandrespiratorycompetentclonesoftheindustrialyeastsaccharomycescerevisiae
AT estefanigarciarios steroltargetedlaboratoryevolutionallowstheisolationofthermotolerantandrespiratorycompetentclonesoftheindustrialyeastsaccharomycescerevisiae
AT franciscoestruch steroltargetedlaboratoryevolutionallowstheisolationofthermotolerantandrespiratorycompetentclonesoftheindustrialyeastsaccharomycescerevisiae
AT franciscarandezgil steroltargetedlaboratoryevolutionallowstheisolationofthermotolerantandrespiratorycompetentclonesoftheindustrialyeastsaccharomycescerevisiae