Nano-engineered thin-film thermoelectric materials enable practical solid-state refrigeration

Abstract Refrigeration needs are increasing worldwide with a demand for alternates to bulky poorly scalable vapor compression systems. Here, we demonstrate the first proof of practical solid-state refrigeration, using nano-engineered controlled hierarchically engineered superlattice thin-film thermo...

Full description

Saved in:
Bibliographic Details
Main Authors: Jake Ballard, Matthew Hubbard, Sung-Jin Jung, Vanessa Rojas, Richard Ung, Junwoo Suh, MinSoo Kim, Joonhyun Lee, Jonathan M. Pierce, Rama Venkatasubramanian
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-59698-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Refrigeration needs are increasing worldwide with a demand for alternates to bulky poorly scalable vapor compression systems. Here, we demonstrate the first proof of practical solid-state refrigeration, using nano-engineered controlled hierarchically engineered superlattice thin-film thermoelectric materials. With 100%-better thermoelectric materials figure of merit, ZT, than the conventional bulk materials near 300 K, we demonstrate (i) module-level ZT greater than 75% and (ii) a system-level refrigeration ZT 70% better than that of bulk devices. Thin-film thermoelectric modules offer 100–300% better coefficient-of-performance than bulk devices depending on operational scenarios; system-level coefficient-of-performance is ~15 for temperature differentials of 1.3 °C. The thin-film devices enable more heat pumping per P-N couple, relevant for distributed and portable refrigeration, and electronics cooling. Beyond the demonstration of nano-engineered materials for a system-level advantage, we utilize 1/1000th active materials with scalable microelectronic manufacturing. The improved efficiency and ultra-low thermoelectric materials usage herald a new beginning in solid-state refrigeration.
ISSN:2041-1723