基于轻量化YOLOX算法的东北虎检测
以大型哺乳动物东北虎(<italic>Panthera tigris altaica</italic>)为例,通过使用圈养东北虎监测影像数据集(ATRW),采用YOLOX算法对东北虎进行目标检测研究,检测速度为87.59张/s,0.50阈值准确率<inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mo stretchy="false">...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Editorial Department of Chinese Journal of Wildlife
2023-11-01
|
Series: | 野生动物学报 |
Subjects: | |
Online Access: | http://ysdw.nefu.edu.cn/thesisDetails#10.12375/ysdwxb.20230405 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 以大型哺乳动物东北虎(<italic>Panthera tigris altaica</italic>)为例,通过使用圈养东北虎监测影像数据集(ATRW),采用YOLOX算法对东北虎进行目标检测研究,检测速度为87.59张/s,0.50阈值准确率<inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mo stretchy="false">(</mo><mi>m</mi><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn mathvariant="normal">0.50</mn></mrow></msub><mo stretchy="false">)</mo></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/29316FC3-CBDB-4584-956E-5B0CDFD28C88-M001.jpg"><?fx-imagestate width="12.10733318" height="3.89466691"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/29316FC3-CBDB-4584-956E-5B0CDFD28C88-M001c.jpg"><?fx-imagestate width="12.10733318" height="3.89466691"?></graphic></alternatives></inline-formula>为97.32%,0.75阈值准确率(<inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mi>m</mi><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn mathvariant="normal">0.75</mn></mrow></msub><mo stretchy="false">)</mo></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/29316FC3-CBDB-4584-956E-5B0CDFD28C88-M002.jpg"><?fx-imagestate width="11.00666618" height="3.89466691"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/29316FC3-CBDB-4584-956E-5B0CDFD28C88-M002c.jpg"><?fx-imagestate width="11.00666618" height="3.89466691"?></graphic></alternatives></inline-formula>为75.10%,模型总参数量为8.938×10<sup>6</sup>。通过筛选无锚框算法,对选出的YOLOX算法进行轻量化、添加注意力机制及网络损失函数的优化,优化后的算法检测速度提升1.74张/s,<inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mi>m</mi><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn mathvariant="normal">0.50</mn></mrow></msub></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/29316FC3-CBDB-4584-956E-5B0CDFD28C88-M003.jpg"><?fx-imagestate width="9.65200043" height="3.21733332"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/29316FC3-CBDB-4584-956E-5B0CDFD28C88-M003c.jpg"><?fx-imagestate width="9.65200043" height="3.21733332"?></graphic></alternatives></inline-formula>准确率提升1.02个百分点,<inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mi>m</mi><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn mathvariant="normal">0.75</mn></mrow></msub></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/29316FC3-CBDB-4584-956E-5B0CDFD28C88-M004.jpg"><?fx-imagestate width="9.65200043" height="3.21733332"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/29316FC3-CBDB-4584-956E-5B0CDFD28C88-M004c.jpg"><?fx-imagestate width="9.65200043" height="3.21733332"?></graphic></alternatives></inline-formula>准确率提升1.53个百分点,模型的总参数量减少18.47%。算法改进后,在提升识别准确率的同时,有效降低了检测算法依托硬件的需求,为东北虎的野外行为研究、保护生物多样性及东北虎的野外相关数据收集提供了检测算法。 |
---|---|
ISSN: | 2310-1490 |