High In Situ Stress Anisotropy Lead to Formation of Complex Fracture Patterns
During the process of water injection, due to solid particle deposition and foreign liquid intrusion, the formation near the wellbore was contaminated and blocked. As a result, water injection rate reduced and failed to meet the injection requirements. In order to improve water injection rate and im...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Geofluids |
Online Access: | http://dx.doi.org/10.1155/2021/8823212 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554990292434944 |
---|---|
author | Xinjiang Yan Zehao Zhang Jifei Yu Yanfeng Cao Yanguang Yuan |
author_facet | Xinjiang Yan Zehao Zhang Jifei Yu Yanfeng Cao Yanguang Yuan |
author_sort | Xinjiang Yan |
collection | DOAJ |
description | During the process of water injection, due to solid particle deposition and foreign liquid intrusion, the formation near the wellbore was contaminated and blocked. As a result, water injection rate reduced and failed to meet the injection requirements. In order to improve water injection rate and improve oil recovery of offshore oilfields, hydraulic injection tests were carried out in controlled laboratory conditions. In general, the formation of complex fracture patterns is an ideal outcome of the hydraulic fracturing stimulation seeks to achieve. In situ stress condition is an inherited geological condition one can only adopt to. By comparing test results of different experiments that had varied stress and hydraulic injection conditions imposed, we can investigate their impact on the fracture patterns created. This paper presents laboratory evidences to support that if the hydraulic injection condition is managed properly, a complex fracture pattern is possible even under a high in situ stress anisotropy. Even if the in situ stress condition has a large anisotropy, proper hydraulic stimulation operations can still cause complex fracture patterns and thus provide good stimulation efficiency. |
format | Article |
id | doaj-art-36ad8743298a42ec8874e9219143ca8b |
institution | Kabale University |
issn | 1468-8115 1468-8123 |
language | English |
publishDate | 2021-01-01 |
publisher | Wiley |
record_format | Article |
series | Geofluids |
spelling | doaj-art-36ad8743298a42ec8874e9219143ca8b2025-02-03T05:49:51ZengWileyGeofluids1468-81151468-81232021-01-01202110.1155/2021/88232128823212High In Situ Stress Anisotropy Lead to Formation of Complex Fracture PatternsXinjiang Yan0Zehao Zhang1Jifei Yu2Yanfeng Cao3Yanguang Yuan4CNOOC Research Institute, Beijing, ChinaCNOOC Research Institute, Beijing, ChinaCNOOC Research Institute, Beijing, ChinaCNOOC Research Institute, Beijing, ChinaBitCan Geosciences & Engineering Inc., Calgary, AB, CanadaDuring the process of water injection, due to solid particle deposition and foreign liquid intrusion, the formation near the wellbore was contaminated and blocked. As a result, water injection rate reduced and failed to meet the injection requirements. In order to improve water injection rate and improve oil recovery of offshore oilfields, hydraulic injection tests were carried out in controlled laboratory conditions. In general, the formation of complex fracture patterns is an ideal outcome of the hydraulic fracturing stimulation seeks to achieve. In situ stress condition is an inherited geological condition one can only adopt to. By comparing test results of different experiments that had varied stress and hydraulic injection conditions imposed, we can investigate their impact on the fracture patterns created. This paper presents laboratory evidences to support that if the hydraulic injection condition is managed properly, a complex fracture pattern is possible even under a high in situ stress anisotropy. Even if the in situ stress condition has a large anisotropy, proper hydraulic stimulation operations can still cause complex fracture patterns and thus provide good stimulation efficiency.http://dx.doi.org/10.1155/2021/8823212 |
spellingShingle | Xinjiang Yan Zehao Zhang Jifei Yu Yanfeng Cao Yanguang Yuan High In Situ Stress Anisotropy Lead to Formation of Complex Fracture Patterns Geofluids |
title | High In Situ Stress Anisotropy Lead to Formation of Complex Fracture Patterns |
title_full | High In Situ Stress Anisotropy Lead to Formation of Complex Fracture Patterns |
title_fullStr | High In Situ Stress Anisotropy Lead to Formation of Complex Fracture Patterns |
title_full_unstemmed | High In Situ Stress Anisotropy Lead to Formation of Complex Fracture Patterns |
title_short | High In Situ Stress Anisotropy Lead to Formation of Complex Fracture Patterns |
title_sort | high in situ stress anisotropy lead to formation of complex fracture patterns |
url | http://dx.doi.org/10.1155/2021/8823212 |
work_keys_str_mv | AT xinjiangyan highinsitustressanisotropyleadtoformationofcomplexfracturepatterns AT zehaozhang highinsitustressanisotropyleadtoformationofcomplexfracturepatterns AT jifeiyu highinsitustressanisotropyleadtoformationofcomplexfracturepatterns AT yanfengcao highinsitustressanisotropyleadtoformationofcomplexfracturepatterns AT yanguangyuan highinsitustressanisotropyleadtoformationofcomplexfracturepatterns |