Two-scale convergence with respect to measures and homogenization of monotone operators

In 1989 Nguetseng introduced two-scale convergence, which now is a frequently used tool in homogenization of partial differential operators. In this paper we discuss the notion of two-scale convergence with respect to measures. We make an exposition of the basic facts of this theory and develope it...

Full description

Saved in:
Bibliographic Details
Main Authors: Dag Lukkassen, Peter Wall
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2005/217152
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In 1989 Nguetseng introduced two-scale convergence, which now is a frequently used tool in homogenization of partial differential operators. In this paper we discuss the notion of two-scale convergence with respect to measures. We make an exposition of the basic facts of this theory and develope it in various ways. In particular, we consider both variable Lp spaces and variable Sobolev spaces. Moreover, we apply the results to a homogenization problem connected to a class of monotone operators.
ISSN:0972-6802