Safety-Critical Oracles for Metamorphic Testing of Deep Learning LiDAR Point Cloud Object Detectors
Robustness testing is crucial for verifying autonomous vehicles, especially for safety-critical deep learning components like light detection and ranging (LiDAR) object detectors. Metamorphic testing (MT) assesses the robustness by automatically generating test cases based on abstract system specifi...
Saved in:
| Main Authors: | Simon Speth, Maximilian Trien, Dominik Kufer, Alexander Pretschner |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Open Journal of Intelligent Transportation Systems |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10849578/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Mutsu 2020 Scanning LiDAR Experiment: Comparison of Dual and Single Scanning LiDAR Systems for Near‐Shore Wind Measurement
by: Susumu Shimada, et al.
Published: (2025-04-01) -
Comparative Analysis of LiDAR Inertial Odometry Algorithms in Blueberry Crops
by: Ricardo Huaman, et al.
Published: (2025-01-01) -
Spaceborne LiDAR Systems: Evolution, Capabilities, and Challenges
by: Jan Bolcek, et al.
Published: (2025-06-01) -
Efficient Moving Object Segmentation in LiDAR Point Clouds Using Minimal Number of Sweeps
by: Zoltan Rozsa, et al.
Published: (2025-01-01) -
Inc-DLOM: Incremental Direct LiDAR Odometry and Mapping
by: Kaiduo Fang, et al.
Published: (2025-01-01)