An off-lattice discrete model to characterise filamentous yeast colony morphology.
We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2024-11-01
|
| Series: | PLoS Computational Biology |
| Online Access: | https://doi.org/10.1371/journal.pcbi.1012605 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850105371546353664 |
|---|---|
| author | Kai Li J Edward F Green Hayden Tronnolone Alexander K Y Tam Andrew J Black Jennifer M Gardner Joanna F Sundstrom Vladimir Jiranek Benjamin J Binder |
| author_facet | Kai Li J Edward F Green Hayden Tronnolone Alexander K Y Tam Andrew J Black Jennifer M Gardner Joanna F Sundstrom Vladimir Jiranek Benjamin J Binder |
| author_sort | Kai Li |
| collection | DOAJ |
| description | We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results. |
| format | Article |
| id | doaj-art-363142b3aa7b4bd9baea5b9aba73b3e4 |
| institution | OA Journals |
| issn | 1553-734X 1553-7358 |
| language | English |
| publishDate | 2024-11-01 |
| publisher | Public Library of Science (PLoS) |
| record_format | Article |
| series | PLoS Computational Biology |
| spelling | doaj-art-363142b3aa7b4bd9baea5b9aba73b3e42025-08-20T02:39:07ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582024-11-012011e101260510.1371/journal.pcbi.1012605An off-lattice discrete model to characterise filamentous yeast colony morphology.Kai LiJ Edward F GreenHayden TronnoloneAlexander K Y TamAndrew J BlackJennifer M GardnerJoanna F SundstromVladimir JiranekBenjamin J BinderWe combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.https://doi.org/10.1371/journal.pcbi.1012605 |
| spellingShingle | Kai Li J Edward F Green Hayden Tronnolone Alexander K Y Tam Andrew J Black Jennifer M Gardner Joanna F Sundstrom Vladimir Jiranek Benjamin J Binder An off-lattice discrete model to characterise filamentous yeast colony morphology. PLoS Computational Biology |
| title | An off-lattice discrete model to characterise filamentous yeast colony morphology. |
| title_full | An off-lattice discrete model to characterise filamentous yeast colony morphology. |
| title_fullStr | An off-lattice discrete model to characterise filamentous yeast colony morphology. |
| title_full_unstemmed | An off-lattice discrete model to characterise filamentous yeast colony morphology. |
| title_short | An off-lattice discrete model to characterise filamentous yeast colony morphology. |
| title_sort | off lattice discrete model to characterise filamentous yeast colony morphology |
| url | https://doi.org/10.1371/journal.pcbi.1012605 |
| work_keys_str_mv | AT kaili anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT jedwardfgreen anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT haydentronnolone anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT alexanderkytam anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT andrewjblack anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT jennifermgardner anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT joannafsundstrom anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT vladimirjiranek anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT benjaminjbinder anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT kaili offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT jedwardfgreen offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT haydentronnolone offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT alexanderkytam offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT andrewjblack offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT jennifermgardner offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT joannafsundstrom offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT vladimirjiranek offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology AT benjaminjbinder offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology |