An off-lattice discrete model to characterise filamentous yeast colony morphology.

We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and...

Full description

Saved in:
Bibliographic Details
Main Authors: Kai Li, J Edward F Green, Hayden Tronnolone, Alexander K Y Tam, Andrew J Black, Jennifer M Gardner, Joanna F Sundstrom, Vladimir Jiranek, Benjamin J Binder
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-11-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1012605
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850105371546353664
author Kai Li
J Edward F Green
Hayden Tronnolone
Alexander K Y Tam
Andrew J Black
Jennifer M Gardner
Joanna F Sundstrom
Vladimir Jiranek
Benjamin J Binder
author_facet Kai Li
J Edward F Green
Hayden Tronnolone
Alexander K Y Tam
Andrew J Black
Jennifer M Gardner
Joanna F Sundstrom
Vladimir Jiranek
Benjamin J Binder
author_sort Kai Li
collection DOAJ
description We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.
format Article
id doaj-art-363142b3aa7b4bd9baea5b9aba73b3e4
institution OA Journals
issn 1553-734X
1553-7358
language English
publishDate 2024-11-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Computational Biology
spelling doaj-art-363142b3aa7b4bd9baea5b9aba73b3e42025-08-20T02:39:07ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582024-11-012011e101260510.1371/journal.pcbi.1012605An off-lattice discrete model to characterise filamentous yeast colony morphology.Kai LiJ Edward F GreenHayden TronnoloneAlexander K Y TamAndrew J BlackJennifer M GardnerJoanna F SundstromVladimir JiranekBenjamin J BinderWe combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.https://doi.org/10.1371/journal.pcbi.1012605
spellingShingle Kai Li
J Edward F Green
Hayden Tronnolone
Alexander K Y Tam
Andrew J Black
Jennifer M Gardner
Joanna F Sundstrom
Vladimir Jiranek
Benjamin J Binder
An off-lattice discrete model to characterise filamentous yeast colony morphology.
PLoS Computational Biology
title An off-lattice discrete model to characterise filamentous yeast colony morphology.
title_full An off-lattice discrete model to characterise filamentous yeast colony morphology.
title_fullStr An off-lattice discrete model to characterise filamentous yeast colony morphology.
title_full_unstemmed An off-lattice discrete model to characterise filamentous yeast colony morphology.
title_short An off-lattice discrete model to characterise filamentous yeast colony morphology.
title_sort off lattice discrete model to characterise filamentous yeast colony morphology
url https://doi.org/10.1371/journal.pcbi.1012605
work_keys_str_mv AT kaili anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT jedwardfgreen anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT haydentronnolone anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT alexanderkytam anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT andrewjblack anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT jennifermgardner anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT joannafsundstrom anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT vladimirjiranek anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT benjaminjbinder anofflatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT kaili offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT jedwardfgreen offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT haydentronnolone offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT alexanderkytam offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT andrewjblack offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT jennifermgardner offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT joannafsundstrom offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT vladimirjiranek offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology
AT benjaminjbinder offlatticediscretemodeltocharacterisefilamentousyeastcolonymorphology