Uniform approximation by incomplete polynomials
For any θ with 0<θ<1, it is known that, for the set of all incomplete polynomials of type θ, i.e, {p(x)=∑k=snakxk:s≥θ⋅n}, to have the Weierstrass property on [aθ,1], it is necessary that θ2≤aθ≤1. In this paper, we show that the above inequalities are essentially sufficient as well....
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1978-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171278000411 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For any θ with 0<θ<1, it is known that, for the set of all incomplete polynomials of type θ, i.e, {p(x)=∑k=snakxk:s≥θ⋅n}, to have the Weierstrass property on [aθ,1], it is necessary that θ2≤aθ≤1. In this paper, we show that the above inequalities are essentially sufficient as well. |
---|---|
ISSN: | 0161-1712 1687-0425 |