Study on adaptive multiscale finite element method for two-dimensional singularly perturbed problems with two parameters(二维双参数奇异摄动问题的自适应多尺度有限元法探究)

This paper addresses the two-dimensional singularly perturbed partial differentiable equation with two parameters, since the existence of two scaled small parameters it would bring jumps and large errors of the solution. Based on the values of two scaled parameters,we adopt an iterative algorithm to...

Full description

Saved in:
Bibliographic Details
Main Authors: 孙美玲(SUN Meiling), 陈璐(CHEN Lu), 江山(JIANG Shan)
Format: Article
Language:zho
Published: Zhejiang University Press 2025-05-01
Series:Zhejiang Daxue xuebao. Lixue ban
Online Access:https://doi.org/10.3785/j.issn.1008-9497.2025.03.014
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849389690906476544
author 孙美玲(SUN Meiling)
陈璐(CHEN Lu)
江山(JIANG Shan)
author_facet 孙美玲(SUN Meiling)
陈璐(CHEN Lu)
江山(JIANG Shan)
author_sort 孙美玲(SUN Meiling)
collection DOAJ
description This paper addresses the two-dimensional singularly perturbed partial differentiable equation with two parameters, since the existence of two scaled small parameters it would bring jumps and large errors of the solution. Based on the values of two scaled parameters,we adopt an iterative algorithm to generate a discrete graded mesh, and propose an adaptive multiscale finite element method on the relative coarse mesh to achieve the accurate and efficient solution, therefore reducing errors reasonably. The new method outperforms traditional methods, and shows evident advantages and updated abilities.研究了二维双参数奇异摄动偏微分方程,因2个跨尺度的小参数可能导致其解跳跃,产生较大误差,故基于双参数的实际跨尺度大小,用迭代算法生成离散化分层网格,提出了自适应多尺度有限元法。该方法在粗网格水平上就能精确高效地逼近跳跃解,有效降低误差,其计算优势和改进效果较传统方法有显著的提升。
format Article
id doaj-art-35f82ec9ea09421e8d2cc8867132e685
institution Kabale University
issn 1008-9497
language zho
publishDate 2025-05-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj-art-35f82ec9ea09421e8d2cc8867132e6852025-08-20T03:41:53ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972025-05-0152340440910.3785/j.issn.1008-9497.2025.03.014Study on adaptive multiscale finite element method for two-dimensional singularly perturbed problems with two parameters(二维双参数奇异摄动问题的自适应多尺度有限元法探究)孙美玲(SUN Meiling)0https://orcid.org/0000-0003-0061-5155陈璐(CHEN Lu)1江山(JIANG Shan)2https://orcid.org/0000-0001-7983-00121Department of Mathematics, Nantong Vocational University, Nantong 226007,Jiangsu Province, China(1南通职业大学 数学教研室, 江苏 南通 226007)2School of Mathematics and Statistics, Nantong University, Nantong 226019, Jiangsu Province, China(2南通大学 数学与统计学院, 江苏 南通 226019)2School of Mathematics and Statistics, Nantong University, Nantong 226019, Jiangsu Province, China(2南通大学 数学与统计学院, 江苏 南通 226019)This paper addresses the two-dimensional singularly perturbed partial differentiable equation with two parameters, since the existence of two scaled small parameters it would bring jumps and large errors of the solution. Based on the values of two scaled parameters,we adopt an iterative algorithm to generate a discrete graded mesh, and propose an adaptive multiscale finite element method on the relative coarse mesh to achieve the accurate and efficient solution, therefore reducing errors reasonably. The new method outperforms traditional methods, and shows evident advantages and updated abilities.研究了二维双参数奇异摄动偏微分方程,因2个跨尺度的小参数可能导致其解跳跃,产生较大误差,故基于双参数的实际跨尺度大小,用迭代算法生成离散化分层网格,提出了自适应多尺度有限元法。该方法在粗网格水平上就能精确高效地逼近跳跃解,有效降低误差,其计算优势和改进效果较传统方法有显著的提升。https://doi.org/10.3785/j.issn.1008-9497.2025.03.014
spellingShingle 孙美玲(SUN Meiling)
陈璐(CHEN Lu)
江山(JIANG Shan)
Study on adaptive multiscale finite element method for two-dimensional singularly perturbed problems with two parameters(二维双参数奇异摄动问题的自适应多尺度有限元法探究)
Zhejiang Daxue xuebao. Lixue ban
title Study on adaptive multiscale finite element method for two-dimensional singularly perturbed problems with two parameters(二维双参数奇异摄动问题的自适应多尺度有限元法探究)
title_full Study on adaptive multiscale finite element method for two-dimensional singularly perturbed problems with two parameters(二维双参数奇异摄动问题的自适应多尺度有限元法探究)
title_fullStr Study on adaptive multiscale finite element method for two-dimensional singularly perturbed problems with two parameters(二维双参数奇异摄动问题的自适应多尺度有限元法探究)
title_full_unstemmed Study on adaptive multiscale finite element method for two-dimensional singularly perturbed problems with two parameters(二维双参数奇异摄动问题的自适应多尺度有限元法探究)
title_short Study on adaptive multiscale finite element method for two-dimensional singularly perturbed problems with two parameters(二维双参数奇异摄动问题的自适应多尺度有限元法探究)
title_sort study on adaptive multiscale finite element method for two dimensional singularly perturbed problems with two parameters 二维双参数奇异摄动问题的自适应多尺度有限元法探究
url https://doi.org/10.3785/j.issn.1008-9497.2025.03.014
work_keys_str_mv AT sūnměilíngsunmeiling studyonadaptivemultiscalefiniteelementmethodfortwodimensionalsingularlyperturbedproblemswithtwoparametersèrwéishuāngcānshùqíyìshèdòngwèntídezìshìyīngduōchǐdùyǒuxiànyuánfǎtànjiū
AT chénlùchenlu studyonadaptivemultiscalefiniteelementmethodfortwodimensionalsingularlyperturbedproblemswithtwoparametersèrwéishuāngcānshùqíyìshèdòngwèntídezìshìyīngduōchǐdùyǒuxiànyuánfǎtànjiū
AT jiāngshānjiangshan studyonadaptivemultiscalefiniteelementmethodfortwodimensionalsingularlyperturbedproblemswithtwoparametersèrwéishuāngcānshùqíyìshèdòngwèntídezìshìyīngduōchǐdùyǒuxiànyuánfǎtànjiū