Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis

The low-temperature reverse water-gas shift (LT-RWGS) is a critical and energy effective technology for syngas production and the mitigation of anthropogenic carbon emissions. Developing efficient and well-defined catalysts for the LT-RWGS, from which structure-activity relationships can be drawn, i...

Full description

Saved in:
Bibliographic Details
Main Authors: Colin Hansen, Dirk Baabe, Marc D. Walter, Christophe Copéret
Format: Article
Language:deu
Published: Swiss Chemical Society 2025-04-01
Series:CHIMIA
Subjects:
Online Access:https://www.chimia.ch/chimia/article/view/7625
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850284632777424896
author Colin Hansen
Dirk Baabe
Marc D. Walter
Christophe Copéret
author_facet Colin Hansen
Dirk Baabe
Marc D. Walter
Christophe Copéret
author_sort Colin Hansen
collection DOAJ
description The low-temperature reverse water-gas shift (LT-RWGS) is a critical and energy effective technology for syngas production and the mitigation of anthropogenic carbon emissions. Developing efficient and well-defined catalysts for the LT-RWGS, from which structure-activity relationships can be drawn, is a significant challenge. Herein we describe how the identification of the grafting properties of tetramesityldiiron (Fe2Mes4) helps with designing tailored and highly efficient catalysts of PtFe@SiO2 composition. To that end, a molecular analogue, Fe2Mes3OSi(OtBu)3, was synthesized and characterized by X-ray diffraction, 57Fe-Mössbauer and 1H-NMR spectroscopy. The results confirmed that tetramesityldiiron grafts onto silica via selective displacement of a single mesityl ligand, forming Fe2Mes3@SiO2, while steric hindrance likely prevents secondary interactions with surface siloxide bridges. This work highlights the potential of tetramesityldiiron as a versatile precursor for synthesizing bimetallic MFe@SiO2 systems, enabling the rational development of highly efficient LT-RWGS and CO2 hydrogenation catalysts.
format Article
id doaj-art-35f3a25cd93d4b32b7a79012f5b5ad44
institution OA Journals
issn 0009-4293
2673-2424
language deu
publishDate 2025-04-01
publisher Swiss Chemical Society
record_format Article
series CHIMIA
spelling doaj-art-35f3a25cd93d4b32b7a79012f5b5ad442025-08-20T01:47:32ZdeuSwiss Chemical SocietyCHIMIA0009-42932673-24242025-04-0179410.2533/chimia.2025.204Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift CatalysisColin Hansen0https://orcid.org/0009-0004-0479-0430Dirk Baabe1https://orcid.org/0000-0001-6931-4866Marc D. Walter2https://orcid.org/0000-0002-4682-8749Christophe Copéret3https://orcid.org/0000-0001-9660-3890Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, SwitzerlandInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, GermanyInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, GermanyDepartment of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, SwitzerlandThe low-temperature reverse water-gas shift (LT-RWGS) is a critical and energy effective technology for syngas production and the mitigation of anthropogenic carbon emissions. Developing efficient and well-defined catalysts for the LT-RWGS, from which structure-activity relationships can be drawn, is a significant challenge. Herein we describe how the identification of the grafting properties of tetramesityldiiron (Fe2Mes4) helps with designing tailored and highly efficient catalysts of PtFe@SiO2 composition. To that end, a molecular analogue, Fe2Mes3OSi(OtBu)3, was synthesized and characterized by X-ray diffraction, 57Fe-Mössbauer and 1H-NMR spectroscopy. The results confirmed that tetramesityldiiron grafts onto silica via selective displacement of a single mesityl ligand, forming Fe2Mes3@SiO2, while steric hindrance likely prevents secondary interactions with surface siloxide bridges. This work highlights the potential of tetramesityldiiron as a versatile precursor for synthesizing bimetallic MFe@SiO2 systems, enabling the rational development of highly efficient LT-RWGS and CO2 hydrogenation catalysts. https://www.chimia.ch/chimia/article/view/7625Bimetallic NanoparticlesCO2 conversion57Fe Mössbauer spectroscopyHeterogeneous catalysisSurface organometallic chemistry
spellingShingle Colin Hansen
Dirk Baabe
Marc D. Walter
Christophe Copéret
Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis
CHIMIA
Bimetallic Nanoparticles
CO2 conversion
57Fe Mössbauer spectroscopy
Heterogeneous catalysis
Surface organometallic chemistry
title Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis
title_full Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis
title_fullStr Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis
title_full_unstemmed Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis
title_short Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis
title_sort surface organo iron chemistry towards efficient reverse water gas shift catalysis
topic Bimetallic Nanoparticles
CO2 conversion
57Fe Mössbauer spectroscopy
Heterogeneous catalysis
Surface organometallic chemistry
url https://www.chimia.ch/chimia/article/view/7625
work_keys_str_mv AT colinhansen surfaceorganoironchemistrytowardsefficientreversewatergasshiftcatalysis
AT dirkbaabe surfaceorganoironchemistrytowardsefficientreversewatergasshiftcatalysis
AT marcdwalter surfaceorganoironchemistrytowardsefficientreversewatergasshiftcatalysis
AT christophecoperet surfaceorganoironchemistrytowardsefficientreversewatergasshiftcatalysis