Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis
The low-temperature reverse water-gas shift (LT-RWGS) is a critical and energy effective technology for syngas production and the mitigation of anthropogenic carbon emissions. Developing efficient and well-defined catalysts for the LT-RWGS, from which structure-activity relationships can be drawn, i...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Swiss Chemical Society
2025-04-01
|
| Series: | CHIMIA |
| Subjects: | |
| Online Access: | https://www.chimia.ch/chimia/article/view/7625 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850284632777424896 |
|---|---|
| author | Colin Hansen Dirk Baabe Marc D. Walter Christophe Copéret |
| author_facet | Colin Hansen Dirk Baabe Marc D. Walter Christophe Copéret |
| author_sort | Colin Hansen |
| collection | DOAJ |
| description | The low-temperature reverse water-gas shift (LT-RWGS) is a critical and energy effective technology for syngas production and the mitigation of anthropogenic carbon emissions. Developing efficient and well-defined catalysts for the LT-RWGS, from which structure-activity relationships can be drawn, is a significant challenge. Herein we describe how the identification of the grafting properties of tetramesityldiiron (Fe2Mes4) helps with designing tailored and highly efficient catalysts of PtFe@SiO2 composition. To that end, a molecular analogue, Fe2Mes3OSi(OtBu)3, was synthesized and characterized by X-ray diffraction, 57Fe-Mössbauer and 1H-NMR spectroscopy. The results confirmed that tetramesityldiiron grafts onto silica via selective displacement of a single mesityl ligand, forming Fe2Mes3@SiO2, while steric hindrance likely prevents secondary interactions with surface siloxide bridges. This work highlights the potential of tetramesityldiiron as a versatile precursor for synthesizing bimetallic MFe@SiO2 systems, enabling the rational development of highly efficient LT-RWGS and CO2 hydrogenation catalysts.
|
| format | Article |
| id | doaj-art-35f3a25cd93d4b32b7a79012f5b5ad44 |
| institution | OA Journals |
| issn | 0009-4293 2673-2424 |
| language | deu |
| publishDate | 2025-04-01 |
| publisher | Swiss Chemical Society |
| record_format | Article |
| series | CHIMIA |
| spelling | doaj-art-35f3a25cd93d4b32b7a79012f5b5ad442025-08-20T01:47:32ZdeuSwiss Chemical SocietyCHIMIA0009-42932673-24242025-04-0179410.2533/chimia.2025.204Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift CatalysisColin Hansen0https://orcid.org/0009-0004-0479-0430Dirk Baabe1https://orcid.org/0000-0001-6931-4866Marc D. Walter2https://orcid.org/0000-0002-4682-8749Christophe Copéret3https://orcid.org/0000-0001-9660-3890Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, SwitzerlandInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, GermanyInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, GermanyDepartment of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, SwitzerlandThe low-temperature reverse water-gas shift (LT-RWGS) is a critical and energy effective technology for syngas production and the mitigation of anthropogenic carbon emissions. Developing efficient and well-defined catalysts for the LT-RWGS, from which structure-activity relationships can be drawn, is a significant challenge. Herein we describe how the identification of the grafting properties of tetramesityldiiron (Fe2Mes4) helps with designing tailored and highly efficient catalysts of PtFe@SiO2 composition. To that end, a molecular analogue, Fe2Mes3OSi(OtBu)3, was synthesized and characterized by X-ray diffraction, 57Fe-Mössbauer and 1H-NMR spectroscopy. The results confirmed that tetramesityldiiron grafts onto silica via selective displacement of a single mesityl ligand, forming Fe2Mes3@SiO2, while steric hindrance likely prevents secondary interactions with surface siloxide bridges. This work highlights the potential of tetramesityldiiron as a versatile precursor for synthesizing bimetallic MFe@SiO2 systems, enabling the rational development of highly efficient LT-RWGS and CO2 hydrogenation catalysts. https://www.chimia.ch/chimia/article/view/7625Bimetallic NanoparticlesCO2 conversion57Fe Mössbauer spectroscopyHeterogeneous catalysisSurface organometallic chemistry |
| spellingShingle | Colin Hansen Dirk Baabe Marc D. Walter Christophe Copéret Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis CHIMIA Bimetallic Nanoparticles CO2 conversion 57Fe Mössbauer spectroscopy Heterogeneous catalysis Surface organometallic chemistry |
| title | Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis |
| title_full | Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis |
| title_fullStr | Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis |
| title_full_unstemmed | Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis |
| title_short | Surface Organo-Iron Chemistry Towards Efficient Reverse Water-Gas Shift Catalysis |
| title_sort | surface organo iron chemistry towards efficient reverse water gas shift catalysis |
| topic | Bimetallic Nanoparticles CO2 conversion 57Fe Mössbauer spectroscopy Heterogeneous catalysis Surface organometallic chemistry |
| url | https://www.chimia.ch/chimia/article/view/7625 |
| work_keys_str_mv | AT colinhansen surfaceorganoironchemistrytowardsefficientreversewatergasshiftcatalysis AT dirkbaabe surfaceorganoironchemistrytowardsefficientreversewatergasshiftcatalysis AT marcdwalter surfaceorganoironchemistrytowardsefficientreversewatergasshiftcatalysis AT christophecoperet surfaceorganoironchemistrytowardsefficientreversewatergasshiftcatalysis |