Statistical methods for dementia risk prediction and recommendations for future work: A systematic review

Abstract Introduction Numerous dementia risk prediction models have been developed in the past decade. However, methodological limitations of the analytical tools used may hamper their ability to generate reliable dementia risk scores. We aim to review the used methodologies. Methods We systematical...

Full description

Saved in:
Bibliographic Details
Main Authors: Jantje Goerdten, Iva Čukić, Samuel O. Danso, Isabelle Carrière, Graciela Muniz‐Terrera
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Alzheimer’s & Dementia: Translational Research & Clinical Interventions
Subjects:
Online Access:https://doi.org/10.1016/j.trci.2019.08.001
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Introduction Numerous dementia risk prediction models have been developed in the past decade. However, methodological limitations of the analytical tools used may hamper their ability to generate reliable dementia risk scores. We aim to review the used methodologies. Methods We systematically reviewed the literature from March 2014 to September 2018 for publications presenting a dementia risk prediction model. We critically discuss the analytical techniques used in the literature. Results In total 137 publications were included in the qualitative synthesis. Three techniques were identified as the most commonly used methodologies: machine learning, logistic regression, and Cox regression. Discussion We identified three major methodological weaknesses: (1) over‐reliance on one data source, (2) poor verification of statistical assumptions of Cox and logistic regression, and (3) lack of validation. The use of larger and more diverse data sets is recommended. Assumptions should be tested thoroughly, and actions should be taken if deviations are detected.
ISSN:2352-8737