Big Data Oriented Novel Background Subtraction Algorithm for Urban Surveillance Systems

Due to the tremendous volume of data generated by urban surveillance systems, big data oriented low-complexity automatic background subtraction techniques are in great demand. In this paper, we propose a novel automatic background subtraction algorithm for urban surveillance systems in which the com...

Full description

Saved in:
Bibliographic Details
Main Authors: Ling Hu, Qiang Ni, Feng Yuan
Format: Article
Language:English
Published: Tsinghua University Press 2018-06-01
Series:Big Data Mining and Analytics
Subjects:
Online Access:https://www.sciopen.com/article/10.26599/BDMA.2018.9020013
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the tremendous volume of data generated by urban surveillance systems, big data oriented low-complexity automatic background subtraction techniques are in great demand. In this paper, we propose a novel automatic background subtraction algorithm for urban surveillance systems in which the computer can automatically renew an image as the new background image when no object is detected. This method is both simple and robust with respect to changes in light conditions.
ISSN:2096-0654