An Oxidation Gradient Straddling the Small Planet Radius Valley

We present a population-level view of volatile gas species (H _2 , He, H _2 O, O _2 , CO, CO _2 , CH _4 ) distribution during the sub-Neptune to rocky planet transition, revealing in detail the dynamic nature of small planet atmospheric compositions. Our novel model couples the atmospheric escape mo...

Full description

Saved in:
Bibliographic Details
Main Authors: Collin Cherubim, Robin Wordsworth, Dan J. Bower, Paolo A. Sossi, Danica Adams, Renyu Hu
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/adbca9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849763395711008768
author Collin Cherubim
Robin Wordsworth
Dan J. Bower
Paolo A. Sossi
Danica Adams
Renyu Hu
author_facet Collin Cherubim
Robin Wordsworth
Dan J. Bower
Paolo A. Sossi
Danica Adams
Renyu Hu
author_sort Collin Cherubim
collection DOAJ
description We present a population-level view of volatile gas species (H _2 , He, H _2 O, O _2 , CO, CO _2 , CH _4 ) distribution during the sub-Neptune to rocky planet transition, revealing in detail the dynamic nature of small planet atmospheric compositions. Our novel model couples the atmospheric escape model IsoFATE with the magma ocean-atmosphere equilibrium chemistry model Atmodeller to simulate interior-atmosphere evolution over time for sub-Neptunes around G, K, and M stars. Chiefly, our simulations reveal that atmospheric mass fractionation driven by escape and interior-atmosphere exchange conspire to create a distinct oxidation gradient straddling the small-planet radius valley. We discover a key mechanism in shaping the oxidation landscape is the dissolution of water into the molten mantle, which shields oxygen from early escape, buffers the escape rate, and leads to oxidized secondary atmospheres following mantle outgassing. Our simulations reproduce a prominent population of He-rich worlds along the upper edge of the radius valley, revealing that they are stable on shorter timescales than previously predicted. Our simulations also robustly predict a broad population of O _2 -dominated atmospheres on close-in planets around low-mass stars, posing a potential source of false positive biosignature detection and marking a high-priority opportunity for the first-ever atmospheric O _2 detection. We motivate future atmospheric characterization surveys by providing a target list of planet candidates predicted to have O _2 -, He-, and deuterium-rich atmospheres.
format Article
id doaj-art-3487e71dba3b46869f1819adf098a154
institution DOAJ
issn 1538-4357
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj-art-3487e71dba3b46869f1819adf098a1542025-08-20T03:05:25ZengIOP PublishingThe Astrophysical Journal1538-43572025-01-0198329710.3847/1538-4357/adbca9An Oxidation Gradient Straddling the Small Planet Radius ValleyCollin Cherubim0https://orcid.org/0000-0002-8466-5469Robin Wordsworth1https://orcid.org/0000-0003-1127-8334Dan J. Bower2https://orcid.org/0000-0002-0673-4860Paolo A. Sossi3https://orcid.org/0000-0002-1462-1882Danica Adams4https://orcid.org/0000-0001-9897-9680Renyu Hu5https://orcid.org/0000-0003-2215-8485Department of Earth and Planetary Sciences, Harvard University , 20 Oxford St., Cambridge, MA 02138, USA ; ccherubim@g.harvard.edu; Center for Astrophysics ∣ Harvard & Smithsonian , 60 Garden St., Cambridge, MA 02138, USADepartment of Earth and Planetary Sciences, Harvard University , 20 Oxford St., Cambridge, MA 02138, USA ; ccherubim@g.harvard.edu; School of Engineering and Applied Sciences, Harvard University , 20 Oxford St., Cambridge, MA 02138, USAInstitute of Geochemistry and Petrology , Department of Earth and Planetary Sciences, ETH Zurich, Clausiusstrasse 25, Zurich CH-8092, SwitzerlandInstitute of Geochemistry and Petrology , Department of Earth and Planetary Sciences, ETH Zurich, Clausiusstrasse 25, Zurich CH-8092, SwitzerlandDepartment of Earth and Planetary Sciences, Harvard University , 20 Oxford St., Cambridge, MA 02138, USA ; ccherubim@g.harvard.eduJet Propulsion Laboratory, California Institute of Technology , Pasadena, CA 91109, USA; Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA 91125, USAWe present a population-level view of volatile gas species (H _2 , He, H _2 O, O _2 , CO, CO _2 , CH _4 ) distribution during the sub-Neptune to rocky planet transition, revealing in detail the dynamic nature of small planet atmospheric compositions. Our novel model couples the atmospheric escape model IsoFATE with the magma ocean-atmosphere equilibrium chemistry model Atmodeller to simulate interior-atmosphere evolution over time for sub-Neptunes around G, K, and M stars. Chiefly, our simulations reveal that atmospheric mass fractionation driven by escape and interior-atmosphere exchange conspire to create a distinct oxidation gradient straddling the small-planet radius valley. We discover a key mechanism in shaping the oxidation landscape is the dissolution of water into the molten mantle, which shields oxygen from early escape, buffers the escape rate, and leads to oxidized secondary atmospheres following mantle outgassing. Our simulations reproduce a prominent population of He-rich worlds along the upper edge of the radius valley, revealing that they are stable on shorter timescales than previously predicted. Our simulations also robustly predict a broad population of O _2 -dominated atmospheres on close-in planets around low-mass stars, posing a potential source of false positive biosignature detection and marking a high-priority opportunity for the first-ever atmospheric O _2 detection. We motivate future atmospheric characterization surveys by providing a target list of planet candidates predicted to have O _2 -, He-, and deuterium-rich atmospheres.https://doi.org/10.3847/1538-4357/adbca9ExoplanetsExoplanet atmospheresExoplanet atmospheric evolutionExoplanet atmospheric compositionPlanetary climatesPlanetary atmospheres
spellingShingle Collin Cherubim
Robin Wordsworth
Dan J. Bower
Paolo A. Sossi
Danica Adams
Renyu Hu
An Oxidation Gradient Straddling the Small Planet Radius Valley
The Astrophysical Journal
Exoplanets
Exoplanet atmospheres
Exoplanet atmospheric evolution
Exoplanet atmospheric composition
Planetary climates
Planetary atmospheres
title An Oxidation Gradient Straddling the Small Planet Radius Valley
title_full An Oxidation Gradient Straddling the Small Planet Radius Valley
title_fullStr An Oxidation Gradient Straddling the Small Planet Radius Valley
title_full_unstemmed An Oxidation Gradient Straddling the Small Planet Radius Valley
title_short An Oxidation Gradient Straddling the Small Planet Radius Valley
title_sort oxidation gradient straddling the small planet radius valley
topic Exoplanets
Exoplanet atmospheres
Exoplanet atmospheric evolution
Exoplanet atmospheric composition
Planetary climates
Planetary atmospheres
url https://doi.org/10.3847/1538-4357/adbca9
work_keys_str_mv AT collincherubim anoxidationgradientstraddlingthesmallplanetradiusvalley
AT robinwordsworth anoxidationgradientstraddlingthesmallplanetradiusvalley
AT danjbower anoxidationgradientstraddlingthesmallplanetradiusvalley
AT paoloasossi anoxidationgradientstraddlingthesmallplanetradiusvalley
AT danicaadams anoxidationgradientstraddlingthesmallplanetradiusvalley
AT renyuhu anoxidationgradientstraddlingthesmallplanetradiusvalley
AT collincherubim oxidationgradientstraddlingthesmallplanetradiusvalley
AT robinwordsworth oxidationgradientstraddlingthesmallplanetradiusvalley
AT danjbower oxidationgradientstraddlingthesmallplanetradiusvalley
AT paoloasossi oxidationgradientstraddlingthesmallplanetradiusvalley
AT danicaadams oxidationgradientstraddlingthesmallplanetradiusvalley
AT renyuhu oxidationgradientstraddlingthesmallplanetradiusvalley