Analisis Kinerja Intrusion Detection System Berbasis Algoritma Random Forest Menggunakan Dataset Unbalanced Honeynet BSSN
Teknologi dan sistem informasi yang semakin berkembang menjadikan ancaman siber juga semakin meningkat. Pada tahun 2023, Indonesia menduduki peringkat pertama sebagai negara dengan sumber serangan tertinggi. Untuk mengatasi permasalahan tersebut, Intrusion Detection System (IDS) dijadikan solusi di...
Saved in:
Main Authors: | Kuni Inayah, Kalamullah Ramli |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
University of Brawijaya
2024-08-01
|
Series: | Jurnal Teknologi Informasi dan Ilmu Komputer |
Subjects: | |
Online Access: | https://jtiik.ub.ac.id/index.php/jtiik/article/view/8911 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
An Enhanced LSTM Approach for Detecting IoT-Based DDoS Attacks Using Honeypot Data
by: Arjun Kumar Bose Arnob, et al.
Published: (2025-02-01) -
ResInceptNet-SA: A Network Traffic Intrusion Detection Model Fusing Feature Selection and Balanced Datasets
by: Guorui Liu, et al.
Published: (2025-01-01) -
Algoritma K-Nearest Neighbor pada Kasus Dataset Imbalanced untuk Klasifikasi Kinerja Karyawan Perusahaan
by: Fitri Nuraeni, et al.
Published: (2024-07-01) -
Research on intrusion detection method for edge networks based on federated reinforcement learning
by: DING Kai, et al.
Published: (2024-12-01) -
Multi-objective optimization algorithms for intrusion detection in IoT networks: A systematic review
by: Shubhkirti Sharma, et al.
Published: (2024-01-01)