Detection of Methane Emissive “Hot Spots” in Landfills: An Advanced Statistical Method for Processing UAV Data

The effective management of landfills requires advancements in techniques for rapid data collection and analysis of gas emissions. This work aims to refine methane (CH<sub>4</sub>) emission data acquired from landfills by applying a robust geostatistical method to drone-collected measure...

Full description

Saved in:
Bibliographic Details
Main Authors: Maurizio Guerra, Maurizio De Molfetta, Antonio Diligenti, Marco Falconi, Vincenzo Fiano, Chiara Fiori, Donatello Fosco, Lucina Luchetti, Bruno Notarnicola, Pietro Alexander Renzulli, Enrico Sacchi, Nino Tarantino, Marcello Tognacci, Antonella Vecchio
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/11/1890
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850128994197831680
author Maurizio Guerra
Maurizio De Molfetta
Antonio Diligenti
Marco Falconi
Vincenzo Fiano
Chiara Fiori
Donatello Fosco
Lucina Luchetti
Bruno Notarnicola
Pietro Alexander Renzulli
Enrico Sacchi
Nino Tarantino
Marcello Tognacci
Antonella Vecchio
author_facet Maurizio Guerra
Maurizio De Molfetta
Antonio Diligenti
Marco Falconi
Vincenzo Fiano
Chiara Fiori
Donatello Fosco
Lucina Luchetti
Bruno Notarnicola
Pietro Alexander Renzulli
Enrico Sacchi
Nino Tarantino
Marcello Tognacci
Antonella Vecchio
author_sort Maurizio Guerra
collection DOAJ
description The effective management of landfills requires advancements in techniques for rapid data collection and analysis of gas emissions. This work aims to refine methane (CH<sub>4</sub>) emission data acquired from landfills by applying a robust geostatistical method to drone-collected measurements. Specifically, we use UAV-mounted laser spectrophotometer technology (TDLAS-UAV) to gather rapid, high-resolution data, which can sometimes be noisy due to atmospheric variations and sensor drift. For data handling, the key innovation is the application of the local indicator of spatial association (LISA), a technique that typically provides <i>p</i>-values to assess the statistical significance of observed spatial clusters. This approach was applied both on an areal basis and on a linear basis, following the order of data acquisition, and it produced comparable results. Very low <i>p</i>-values are considered indicative of non-random clustering, suggesting the influence of an underlying spatial control factor. These results were subsequently validated through independent flux chamber surveys. This validation confirms the reliability and objectivity of our geostatistical method in improving drone-based methane emission assessments. The research highlights the need to optimize drone flight paths to ensure a uniform spatial distribution of data and reduce edge effects. It notes that many CH<sub>4</sub> flux measurements often yield non-detectable results, suggesting a review of detection limits. Future work should refine UAV flight patterns and data processing with semi-controlled experiments—using known methane sources—to determine optimal acquisition parameters, such as flight height, sampling frequency, grid resolution, and wind influence.
format Article
id doaj-art-3472e35cb2d44ab6a4e626e11f8f36f2
institution OA Journals
issn 2072-4292
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj-art-3472e35cb2d44ab6a4e626e11f8f36f22025-08-20T02:33:08ZengMDPI AGRemote Sensing2072-42922025-05-011711189010.3390/rs17111890Detection of Methane Emissive “Hot Spots” in Landfills: An Advanced Statistical Method for Processing UAV DataMaurizio Guerra0Maurizio De Molfetta1Antonio Diligenti2Marco Falconi3Vincenzo Fiano4Chiara Fiori5Donatello Fosco6Lucina Luchetti7Bruno Notarnicola8Pietro Alexander Renzulli9Enrico Sacchi10Nino Tarantino11Marcello Tognacci12Antonella Vecchio13Department for the Geological Survey of Italy, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), Italian Institute for Environmental Protection and Research, 00144 Rome, ItalyDipartimento Jonico, Università degli Studi di Bari Aldo Moro, 70121 Taranto, ItalyARPA Abruzzo, Distretto di Chieti, 65100 Chieti, ItalyDepartment for the Geological Survey of Italy, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), Italian Institute for Environmental Protection and Research, 00144 Rome, ItalyDepartment for the Geological Survey of Italy, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), Italian Institute for Environmental Protection and Research, 00144 Rome, ItalyDepartment for the Geological Survey of Italy, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), Italian Institute for Environmental Protection and Research, 00144 Rome, ItalyDipartimento Jonico, Università degli Studi di Bari Aldo Moro, 70121 Taranto, ItalyRegione Abruzzo—PNRR Department, 65100 Pescara, ItalyDipartimento Jonico, Università degli Studi di Bari Aldo Moro, 70121 Taranto, ItalyDipartimento Jonico, Università degli Studi di Bari Aldo Moro, 70121 Taranto, ItalyL.A.V. Srl., 47924 Rimini, ItalyCommissario Unico per la Bonifica delle Discariche e dei Siti Contaminati, 00187 Rome, ItalyWhitelab Srl-LAV, 47924 Rimini, ItalyDepartment for the Geological Survey of Italy, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), Italian Institute for Environmental Protection and Research, 00144 Rome, ItalyThe effective management of landfills requires advancements in techniques for rapid data collection and analysis of gas emissions. This work aims to refine methane (CH<sub>4</sub>) emission data acquired from landfills by applying a robust geostatistical method to drone-collected measurements. Specifically, we use UAV-mounted laser spectrophotometer technology (TDLAS-UAV) to gather rapid, high-resolution data, which can sometimes be noisy due to atmospheric variations and sensor drift. For data handling, the key innovation is the application of the local indicator of spatial association (LISA), a technique that typically provides <i>p</i>-values to assess the statistical significance of observed spatial clusters. This approach was applied both on an areal basis and on a linear basis, following the order of data acquisition, and it produced comparable results. Very low <i>p</i>-values are considered indicative of non-random clustering, suggesting the influence of an underlying spatial control factor. These results were subsequently validated through independent flux chamber surveys. This validation confirms the reliability and objectivity of our geostatistical method in improving drone-based methane emission assessments. The research highlights the need to optimize drone flight paths to ensure a uniform spatial distribution of data and reduce edge effects. It notes that many CH<sub>4</sub> flux measurements often yield non-detectable results, suggesting a review of detection limits. Future work should refine UAV flight patterns and data processing with semi-controlled experiments—using known methane sources—to determine optimal acquisition parameters, such as flight height, sampling frequency, grid resolution, and wind influence.https://www.mdpi.com/2072-4292/17/11/1890methane detectionUAV acquisitiongeostatistical analysisflux chamberlandfill
spellingShingle Maurizio Guerra
Maurizio De Molfetta
Antonio Diligenti
Marco Falconi
Vincenzo Fiano
Chiara Fiori
Donatello Fosco
Lucina Luchetti
Bruno Notarnicola
Pietro Alexander Renzulli
Enrico Sacchi
Nino Tarantino
Marcello Tognacci
Antonella Vecchio
Detection of Methane Emissive “Hot Spots” in Landfills: An Advanced Statistical Method for Processing UAV Data
Remote Sensing
methane detection
UAV acquisition
geostatistical analysis
flux chamber
landfill
title Detection of Methane Emissive “Hot Spots” in Landfills: An Advanced Statistical Method for Processing UAV Data
title_full Detection of Methane Emissive “Hot Spots” in Landfills: An Advanced Statistical Method for Processing UAV Data
title_fullStr Detection of Methane Emissive “Hot Spots” in Landfills: An Advanced Statistical Method for Processing UAV Data
title_full_unstemmed Detection of Methane Emissive “Hot Spots” in Landfills: An Advanced Statistical Method for Processing UAV Data
title_short Detection of Methane Emissive “Hot Spots” in Landfills: An Advanced Statistical Method for Processing UAV Data
title_sort detection of methane emissive hot spots in landfills an advanced statistical method for processing uav data
topic methane detection
UAV acquisition
geostatistical analysis
flux chamber
landfill
url https://www.mdpi.com/2072-4292/17/11/1890
work_keys_str_mv AT maurizioguerra detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT mauriziodemolfetta detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT antoniodiligenti detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT marcofalconi detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT vincenzofiano detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT chiarafiori detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT donatellofosco detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT lucinaluchetti detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT brunonotarnicola detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT pietroalexanderrenzulli detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT enricosacchi detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT ninotarantino detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT marcellotognacci detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata
AT antonellavecchio detectionofmethaneemissivehotspotsinlandfillsanadvancedstatisticalmethodforprocessinguavdata