On Pro-$p$ Cappitt Groups with finite exponent

A pro-$p$ Cappitt group is a pro-$p$ group $G$ such that $\tilde{S}(G) = \overline{ \langle L \leqslant _c G \:|\, L \ntriangleleft G \rangle }$ is a proper subgroup (i.e. $\tilde{S}(G) \ne G$). In this paper we prove that non-abelian pro-$p$ Cappitt groups whose torsion subgroup is closed and it ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Porto, Anderson, Lima, Igor
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.562/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206219492556800
author Porto, Anderson
Lima, Igor
author_facet Porto, Anderson
Lima, Igor
author_sort Porto, Anderson
collection DOAJ
description A pro-$p$ Cappitt group is a pro-$p$ group $G$ such that $\tilde{S}(G) = \overline{ \langle L \leqslant _c G \:|\, L \ntriangleleft G \rangle }$ is a proper subgroup (i.e. $\tilde{S}(G) \ne G$). In this paper we prove that non-abelian pro-$p$ Cappitt groups whose torsion subgroup is closed and it has finite exponent. This result is a natural continuation of main result of the first author [7]. We also prove that in a pro-$p$ Cappitt group its subgroup commutator is a procyclic central subgroup. Finally we show that pro-$2$ Cappitt groups of exponent $4$ are pro-$2$ Dedekind groups. These results are pro-$p$ versions of the generalized Dedekind groups studied by Cappitt (see Theorem 1 and Lemma 7 in [1]).
format Article
id doaj-art-3431ddb8b6394fe9a5ca811fd98af216
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-3431ddb8b6394fe9a5ca811fd98af2162025-02-07T11:19:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G328729210.5802/crmath.56210.5802/crmath.562On Pro-$p$ Cappitt Groups with finite exponentPorto, Anderson0https://orcid.org/0000-0002-8800-0827Lima, Igor1Departamento de Matemática, Universidade de Brasília, Brasilia-DF, 70910-900 Brazil; Instituto de Ciência e Tecnologia - ICT, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina - MG, 39100-000 BrazilDepartamento de Matemática, Universidade de Brasília, Brasilia-DF, 70910-900 Brazil; Instituto de Ciência e Tecnologia - ICT, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina - MG, 39100-000 BrazilA pro-$p$ Cappitt group is a pro-$p$ group $G$ such that $\tilde{S}(G) = \overline{ \langle L \leqslant _c G \:|\, L \ntriangleleft G \rangle }$ is a proper subgroup (i.e. $\tilde{S}(G) \ne G$). In this paper we prove that non-abelian pro-$p$ Cappitt groups whose torsion subgroup is closed and it has finite exponent. This result is a natural continuation of main result of the first author [7]. We also prove that in a pro-$p$ Cappitt group its subgroup commutator is a procyclic central subgroup. Finally we show that pro-$2$ Cappitt groups of exponent $4$ are pro-$2$ Dedekind groups. These results are pro-$p$ versions of the generalized Dedekind groups studied by Cappitt (see Theorem 1 and Lemma 7 in [1]).https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.562/Generalized Dedekind groupspro-$p$ Cappitt groupstorsion groups.
spellingShingle Porto, Anderson
Lima, Igor
On Pro-$p$ Cappitt Groups with finite exponent
Comptes Rendus. Mathématique
Generalized Dedekind groups
pro-$p$ Cappitt groups
torsion groups.
title On Pro-$p$ Cappitt Groups with finite exponent
title_full On Pro-$p$ Cappitt Groups with finite exponent
title_fullStr On Pro-$p$ Cappitt Groups with finite exponent
title_full_unstemmed On Pro-$p$ Cappitt Groups with finite exponent
title_short On Pro-$p$ Cappitt Groups with finite exponent
title_sort on pro p cappitt groups with finite exponent
topic Generalized Dedekind groups
pro-$p$ Cappitt groups
torsion groups.
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.562/
work_keys_str_mv AT portoanderson onpropcappittgroupswithfiniteexponent
AT limaigor onpropcappittgroupswithfiniteexponent