Implicatively Precomplete Sets of Multioperations Defined on a Set of Three Elements

We study the completeness criterion on the set of rank-3 multioperations with respect to the implicative closure operator. The problem is a special case of the problem of finite classification of multioperations defined on an arbitrary set. A description of all precomplete sets is obtained. The expr...

Full description

Saved in:
Bibliographic Details
Main Author: V.I. Panteleev
Format: Article
Language:English
Published: Irkutsk State University 2025-03-01
Series:Известия Иркутского государственного университета: Серия "Математика"
Subjects:
Online Access:https://mathizv.isu.ru/en/article/file?id=1526
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849773023601623040
author V.I. Panteleev
author_facet V.I. Panteleev
author_sort V.I. Panteleev
collection DOAJ
description We study the completeness criterion on the set of rank-3 multioperations with respect to the implicative closure operator. The problem is a special case of the problem of finite classification of multioperations defined on an arbitrary set. A description of all precomplete sets is obtained. The expressive possibilities of the operator are described, including the conditions under which a set of operations implicatively generates all sets of multoperations. The obtained result can be used in the study of multioperations defined on an arbitrary set.
format Article
id doaj-art-342f4db0fec14e7db0223656848fa3d6
institution DOAJ
issn 1997-7670
2541-8785
language English
publishDate 2025-03-01
publisher Irkutsk State University
record_format Article
series Известия Иркутского государственного университета: Серия "Математика"
spelling doaj-art-342f4db0fec14e7db0223656848fa3d62025-08-20T03:02:10ZengIrkutsk State UniversityИзвестия Иркутского государственного университета: Серия "Математика"1997-76702541-87852025-03-01511130140https://doi.org/10.26516/1997-7670.2025.51.130Implicatively Precomplete Sets of Multioperations Defined on a Set of Three ElementsV.I. PanteleevWe study the completeness criterion on the set of rank-3 multioperations with respect to the implicative closure operator. The problem is a special case of the problem of finite classification of multioperations defined on an arbitrary set. A description of all precomplete sets is obtained. The expressive possibilities of the operator are described, including the conditions under which a set of operations implicatively generates all sets of multoperations. The obtained result can be used in the study of multioperations defined on an arbitrary set.https://mathizv.isu.ru/en/article/file?id=1526closuremultioperationclosed setcompositioncompletenessrepresentability
spellingShingle V.I. Panteleev
Implicatively Precomplete Sets of Multioperations Defined on a Set of Three Elements
Известия Иркутского государственного университета: Серия "Математика"
closure
multioperation
closed set
composition
completeness
representability
title Implicatively Precomplete Sets of Multioperations Defined on a Set of Three Elements
title_full Implicatively Precomplete Sets of Multioperations Defined on a Set of Three Elements
title_fullStr Implicatively Precomplete Sets of Multioperations Defined on a Set of Three Elements
title_full_unstemmed Implicatively Precomplete Sets of Multioperations Defined on a Set of Three Elements
title_short Implicatively Precomplete Sets of Multioperations Defined on a Set of Three Elements
title_sort implicatively precomplete sets of multioperations defined on a set of three elements
topic closure
multioperation
closed set
composition
completeness
representability
url https://mathizv.isu.ru/en/article/file?id=1526
work_keys_str_mv AT vipanteleev implicativelyprecompletesetsofmultioperationsdefinedonasetofthreeelements