A Comparison of Three Gap Filling Techniques for Eddy Covariance Net Carbon Fluxes in Short Vegetation Ecosystems

Missing data is an inevitable problem when measuring CO2, water, and energy fluxes between biosphere and atmosphere by eddy covariance systems. To find the optimum gap-filling method for short vegetations, we review three-methods mean diurnal variation (MDV), look-up tables (LUT), and nonlinear regr...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaosong Zhao, Yao Huang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2015/260580
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Missing data is an inevitable problem when measuring CO2, water, and energy fluxes between biosphere and atmosphere by eddy covariance systems. To find the optimum gap-filling method for short vegetations, we review three-methods mean diurnal variation (MDV), look-up tables (LUT), and nonlinear regression (NLR) for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series and evaluate their performance for different artificial gap scenarios based on benchmark datasets from marsh and cropland sites in China. The cumulative errors for three methods have no consistent bias trends, which ranged between −30 and +30 mgCO2 m−2 from May to October at three sites. To reduce sum bias in maximum, combined gap-filling methods were selected for short vegetation. The NLR or LUT method was selected after plant rapidly increasing in spring and before the end of plant growing, and MDV method was used to the other stage. The sum relative error (SRE) of optimum method ranged between −2 and +4% for four-gap level at three sites, except for 55% gaps at soybean site, which also obviously reduced standard deviation of error.
ISSN:1687-9309
1687-9317