A single-cell and spatial wheat root atlas with cross-species annotations delineates conserved tissue-specific marker genes and regulators
Summary: Despite the broad use of single-cell/nucleus RNA sequencing in plant research, accurate cluster annotation in less-studied plant species remains a major challenge due to the lack of validated marker genes. Here, we generated a single-cell RNA sequencing atlas of soil-grown wheat roots and a...
Saved in:
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-02-01
|
Series: | Cell Reports |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124725000117 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary: Despite the broad use of single-cell/nucleus RNA sequencing in plant research, accurate cluster annotation in less-studied plant species remains a major challenge due to the lack of validated marker genes. Here, we generated a single-cell RNA sequencing atlas of soil-grown wheat roots and annotated cluster identities by transferring annotations from publicly available datasets in wheat, rice, maize, and Arabidopsis. The predictions from our orthology-based annotation approach were next validated using untargeted spatial transcriptomics. These results allowed us to predict evolutionarily conserved tissue-specific markers and generate cell type-specific gene regulatory networks for root tissues of wheat and the other species used in our analysis. In summary, we generated a single-cell and spatial transcriptomics resource for wheat root apical meristems, including numerous known and uncharacterized cell type-specific marker genes and developmental regulators. These data and analyses will facilitate future cell type annotation in non-model plant species. |
---|---|
ISSN: | 2211-1247 |