Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers
The row first-minus-last right (RFMLR) circulant matrix and row last-minus-first left (RLMFL) circulant matrices are two special pattern matrices. By using the inverse factorization of polynomial, we give the exact formulae of determinants of the two pattern matrices involving Perrin, Padovan, Tribo...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2014/585438 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849306058616471552 |
|---|---|
| author | Zhaolin Jiang Nuo Shen Juan Li |
| author_facet | Zhaolin Jiang Nuo Shen Juan Li |
| author_sort | Zhaolin Jiang |
| collection | DOAJ |
| description | The row first-minus-last right (RFMLR) circulant matrix and row last-minus-first left (RLMFL) circulant matrices are two special pattern matrices. By using the inverse factorization of polynomial, we give the exact formulae of determinants of the two pattern matrices involving Perrin, Padovan, Tribonacci, and the generalized Lucas sequences in terms of finite many terms of these sequences. |
| format | Article |
| id | doaj-art-33f773ca6aef40d99a1edb78d19cab44 |
| institution | Kabale University |
| issn | 1110-757X 1687-0042 |
| language | English |
| publishDate | 2014-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Journal of Applied Mathematics |
| spelling | doaj-art-33f773ca6aef40d99a1edb78d19cab442025-08-20T03:55:12ZengWileyJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/585438585438Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas NumbersZhaolin Jiang0Nuo Shen1Juan Li2Department of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaThe row first-minus-last right (RFMLR) circulant matrix and row last-minus-first left (RLMFL) circulant matrices are two special pattern matrices. By using the inverse factorization of polynomial, we give the exact formulae of determinants of the two pattern matrices involving Perrin, Padovan, Tribonacci, and the generalized Lucas sequences in terms of finite many terms of these sequences.http://dx.doi.org/10.1155/2014/585438 |
| spellingShingle | Zhaolin Jiang Nuo Shen Juan Li Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers Journal of Applied Mathematics |
| title | Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers |
| title_full | Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers |
| title_fullStr | Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers |
| title_full_unstemmed | Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers |
| title_short | Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers |
| title_sort | determinants of the rfmlr circulant matrices with perrin padovan tribonacci and the generalized lucas numbers |
| url | http://dx.doi.org/10.1155/2014/585438 |
| work_keys_str_mv | AT zhaolinjiang determinantsoftherfmlrcirculantmatriceswithperrinpadovantribonacciandthegeneralizedlucasnumbers AT nuoshen determinantsoftherfmlrcirculantmatriceswithperrinpadovantribonacciandthegeneralizedlucasnumbers AT juanli determinantsoftherfmlrcirculantmatriceswithperrinpadovantribonacciandthegeneralizedlucasnumbers |