Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers

The row first-minus-last right (RFMLR) circulant matrix and row last-minus-first left (RLMFL) circulant matrices are two special pattern matrices. By using the inverse factorization of polynomial, we give the exact formulae of determinants of the two pattern matrices involving Perrin, Padovan, Tribo...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhaolin Jiang, Nuo Shen, Juan Li
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/585438
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849306058616471552
author Zhaolin Jiang
Nuo Shen
Juan Li
author_facet Zhaolin Jiang
Nuo Shen
Juan Li
author_sort Zhaolin Jiang
collection DOAJ
description The row first-minus-last right (RFMLR) circulant matrix and row last-minus-first left (RLMFL) circulant matrices are two special pattern matrices. By using the inverse factorization of polynomial, we give the exact formulae of determinants of the two pattern matrices involving Perrin, Padovan, Tribonacci, and the generalized Lucas sequences in terms of finite many terms of these sequences.
format Article
id doaj-art-33f773ca6aef40d99a1edb78d19cab44
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-33f773ca6aef40d99a1edb78d19cab442025-08-20T03:55:12ZengWileyJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/585438585438Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas NumbersZhaolin Jiang0Nuo Shen1Juan Li2Department of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaDepartment of Mathematics, Linyi University, Linyi, Shandong 276000, ChinaThe row first-minus-last right (RFMLR) circulant matrix and row last-minus-first left (RLMFL) circulant matrices are two special pattern matrices. By using the inverse factorization of polynomial, we give the exact formulae of determinants of the two pattern matrices involving Perrin, Padovan, Tribonacci, and the generalized Lucas sequences in terms of finite many terms of these sequences.http://dx.doi.org/10.1155/2014/585438
spellingShingle Zhaolin Jiang
Nuo Shen
Juan Li
Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers
Journal of Applied Mathematics
title Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers
title_full Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers
title_fullStr Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers
title_full_unstemmed Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers
title_short Determinants of the RFMLR Circulant Matrices with Perrin, Padovan, Tribonacci, and the Generalized Lucas Numbers
title_sort determinants of the rfmlr circulant matrices with perrin padovan tribonacci and the generalized lucas numbers
url http://dx.doi.org/10.1155/2014/585438
work_keys_str_mv AT zhaolinjiang determinantsoftherfmlrcirculantmatriceswithperrinpadovantribonacciandthegeneralizedlucasnumbers
AT nuoshen determinantsoftherfmlrcirculantmatriceswithperrinpadovantribonacciandthegeneralizedlucasnumbers
AT juanli determinantsoftherfmlrcirculantmatriceswithperrinpadovantribonacciandthegeneralizedlucasnumbers