Perkembangan Sensitizer pada Terapi Fotodinamika Tumor dan Kanker Hingga Penuntunan Nanopartikel (Nanoparticulate Targeting) Dengan Antibodi Monoklonal

World Health Organization (WHO) estimates both the number of patients and mortality rates due to cancer will continue to rise. Various researches were conducted in order to prevent and handle the cases of tumors and cancers, including the application of photosynthetic pigment molecules known as phot...

Full description

Saved in:
Bibliographic Details
Main Authors: RENNY INDRAWATI, FERRY F KARWUR, LEENAWATY LIMANTARA
Format: Article
Language:English
Published: Dharmais Cancer Hospital - National Cancer Center 2010-08-01
Series:Indonesian Journal of Cancer
Online Access:https://www.indonesianjournalofcancer.or.id/e-journal/index.php/ijoc/article/view/106
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849236188282486784
author RENNY INDRAWATI
FERRY F KARWUR
LEENAWATY LIMANTARA
author_facet RENNY INDRAWATI
FERRY F KARWUR
LEENAWATY LIMANTARA
author_sort RENNY INDRAWATI
collection DOAJ
description World Health Organization (WHO) estimates both the number of patients and mortality rates due to cancer will continue to rise. Various researches were conducted in order to prevent and handle the cases of tumors and cancers, including the application of photosynthetic pigment molecules known as photodynamic therapy (PDT). Chlorophylls, the main pigment in photosynthesis, have an ability to capture light energy and control series of photobiology and photochemical processes1. In PDT, chlorophyll or its derivatives compounds act as the sensitizer which have energy excitation by light radiation (visible or near infra red), and generate some reactive oxygen species which triggers the death of cancer cells selectively (through apoptosis and / or necrosis pathway)2. Sensitizer compounds have been progressing from the first to third generation. The development of the third generation sensitizer was influenced by the advances of nanotechnology which lead to the improvement of PDT efficacy. The structure and size of nanoparticles can increase light absorption, and make the sensitizer accumulate in cancer tissues more specifically 3-4. Furthermore, nanoparticulatte targeting also interested to be studied because by conjugate functional groups, i.e. monoclonal antibody, on the sensitizer, it can improve the selectivity of therapy in targeting tumor and cancer tissues.
format Article
id doaj-art-33e9ca5c31284c1e9c846dcef04cc03b
institution Kabale University
issn 1978-3744
2355-6811
language English
publishDate 2010-08-01
publisher Dharmais Cancer Hospital - National Cancer Center
record_format Article
series Indonesian Journal of Cancer
spelling doaj-art-33e9ca5c31284c1e9c846dcef04cc03b2025-08-20T04:02:26ZengDharmais Cancer Hospital - National Cancer CenterIndonesian Journal of Cancer1978-37442355-68112010-08-014310.33371/ijoc.v4i3.106Perkembangan Sensitizer pada Terapi Fotodinamika Tumor dan Kanker Hingga Penuntunan Nanopartikel (Nanoparticulate Targeting) Dengan Antibodi MonoklonalRENNY INDRAWATIFERRY F KARWURLEENAWATY LIMANTARAWorld Health Organization (WHO) estimates both the number of patients and mortality rates due to cancer will continue to rise. Various researches were conducted in order to prevent and handle the cases of tumors and cancers, including the application of photosynthetic pigment molecules known as photodynamic therapy (PDT). Chlorophylls, the main pigment in photosynthesis, have an ability to capture light energy and control series of photobiology and photochemical processes1. In PDT, chlorophyll or its derivatives compounds act as the sensitizer which have energy excitation by light radiation (visible or near infra red), and generate some reactive oxygen species which triggers the death of cancer cells selectively (through apoptosis and / or necrosis pathway)2. Sensitizer compounds have been progressing from the first to third generation. The development of the third generation sensitizer was influenced by the advances of nanotechnology which lead to the improvement of PDT efficacy. The structure and size of nanoparticles can increase light absorption, and make the sensitizer accumulate in cancer tissues more specifically 3-4. Furthermore, nanoparticulatte targeting also interested to be studied because by conjugate functional groups, i.e. monoclonal antibody, on the sensitizer, it can improve the selectivity of therapy in targeting tumor and cancer tissues. https://www.indonesianjournalofcancer.or.id/e-journal/index.php/ijoc/article/view/106
spellingShingle RENNY INDRAWATI
FERRY F KARWUR
LEENAWATY LIMANTARA
Perkembangan Sensitizer pada Terapi Fotodinamika Tumor dan Kanker Hingga Penuntunan Nanopartikel (Nanoparticulate Targeting) Dengan Antibodi Monoklonal
Indonesian Journal of Cancer
title Perkembangan Sensitizer pada Terapi Fotodinamika Tumor dan Kanker Hingga Penuntunan Nanopartikel (Nanoparticulate Targeting) Dengan Antibodi Monoklonal
title_full Perkembangan Sensitizer pada Terapi Fotodinamika Tumor dan Kanker Hingga Penuntunan Nanopartikel (Nanoparticulate Targeting) Dengan Antibodi Monoklonal
title_fullStr Perkembangan Sensitizer pada Terapi Fotodinamika Tumor dan Kanker Hingga Penuntunan Nanopartikel (Nanoparticulate Targeting) Dengan Antibodi Monoklonal
title_full_unstemmed Perkembangan Sensitizer pada Terapi Fotodinamika Tumor dan Kanker Hingga Penuntunan Nanopartikel (Nanoparticulate Targeting) Dengan Antibodi Monoklonal
title_short Perkembangan Sensitizer pada Terapi Fotodinamika Tumor dan Kanker Hingga Penuntunan Nanopartikel (Nanoparticulate Targeting) Dengan Antibodi Monoklonal
title_sort perkembangan sensitizer pada terapi fotodinamika tumor dan kanker hingga penuntunan nanopartikel nanoparticulate targeting dengan antibodi monoklonal
url https://www.indonesianjournalofcancer.or.id/e-journal/index.php/ijoc/article/view/106
work_keys_str_mv AT rennyindrawati perkembangansensitizerpadaterapifotodinamikatumordankankerhinggapenuntunannanopartikelnanoparticulatetargetingdenganantibodimonoklonal
AT ferryfkarwur perkembangansensitizerpadaterapifotodinamikatumordankankerhinggapenuntunannanopartikelnanoparticulatetargetingdenganantibodimonoklonal
AT leenawatylimantara perkembangansensitizerpadaterapifotodinamikatumordankankerhinggapenuntunannanopartikelnanoparticulatetargetingdenganantibodimonoklonal