Hydrodynamic efficient cell capture and pairing method on microfluidic cell electrofusion chip

Cell fusion is a widely employed process in various biological procedures, demonstrating significant application value in biotechnology. Cell pairing is a crucial manipulation for cell fusion. Standard fusion techniques, however, often provide poor and random cell contact, leading to low yields. In...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuefeng Wang, Yaqi Bai, Xiaoling Zhang, Wei Li, Jun Yang, Ning Hu
Format: Article
Language:English
Published: AIP Publishing LLC 2025-03-01
Series:APL Bioengineering
Online Access:http://dx.doi.org/10.1063/5.0250472
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell fusion is a widely employed process in various biological procedures, demonstrating significant application value in biotechnology. Cell pairing is a crucial manipulation for cell fusion. Standard fusion techniques, however, often provide poor and random cell contact, leading to low yields. In this study, we present a novel microfluidic device that utilizes a three-path symmetrical channel hydrodynamic capture method to achieve high-efficiency cell capture and pairing. The device contains several symmetrical channels and capture units, enabling three-path capture of two kinds of cells. To better understand the conditions necessary for effective cell pairing, we established a theoretical model of the three-path trapping flow field and conducted a qualitative force analysis on cells. Using K562 cells to explore the effect of different volumetric flow ratios of symmetric channels on cell capture and pairing efficiency, we finally got the optimized structure and obtained a single-cell capture efficiency of approximately 95.6 ± 2.0% and a cell pairing efficiency of approximately 83.3 ± 8.8%. Subsequently, electrofusion experiments were carried out on the paired cells, resulting in a fusion efficiency of approximately 77.8 ± 9.6%.
ISSN:2473-2877