A New Hybrid Machine Learning Method for Stellar Parameter Inference

The advent of machine learning (ML) is revolutionary to numerous scientific disciplines, with a growing number of examples in astronomical spectroscopic inference, as ML is more powerful than traditional techniques. Here we introduce a hybrid ML (HML) method combining automatic differentiation, inte...

Full description

Saved in:
Bibliographic Details
Main Authors: Sujay Shankar, Michael A. Gully-Santiago, Caroline V. Morley
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/adcb47
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850137605597822976
author Sujay Shankar
Michael A. Gully-Santiago
Caroline V. Morley
author_facet Sujay Shankar
Michael A. Gully-Santiago
Caroline V. Morley
author_sort Sujay Shankar
collection DOAJ
description The advent of machine learning (ML) is revolutionary to numerous scientific disciplines, with a growing number of examples in astronomical spectroscopic inference, as ML is more powerful than traditional techniques. Here we introduce a hybrid ML (HML) method combining automatic differentiation, interpolation, and Bayesian optimization to infer stellar parameters of stellar spectra. We study T _eff , ${\mathrm{log}}\,(g)$ , and [Fe/H], but this method could be extended to other parameters such as [ α /Fe] (alpha element abundance), C/O (carbon–oxygen ratio), and f _sed (sedimentation efficiency). We first use blase to semiempirically recast spectra into sets of Voigt profiles. blase is run on 1314 synthetic spectra from a rectilinear subset of the PHOENIX model grid ( T _eff : [2300, 12,000] K, ${\mathrm{log}}\,(g)$ : [2, 6], [Fe/H]: [–0.5, 0], λ : [8038, 12849] Å). For 128,723 detected features, we map stellar parameters to spectral line parameters using linear interpolation. This creates the PHOENIX generator, enabling parallelized spectral synthesis. Gaussian process minimization is used to infer stellar parameters by minimizing a rms loss function. Testing 210 noise-free models ( T _eff : [3000, 11,000] K, ${\mathrm{log}}\,(g)$ : [2, 6], [Fe/H]: [−0.5, 0]), we find inference errors: T _eff : 93 K, ${\mathrm{log}}\,(g)$ : 0.24, and [Fe/H]: 0.056 for T _eff  <  7000 K, and T _eff : 347 K, ${\mathrm{log}}\,(g)$ : 0.26, and [Fe/H]: 0.16 for T _eff ≥ 7000 K. We also upload online an archive of blase models of the PHOENIX subset. This proof-of-concept study shows that semiempirical HML is a viable alternative to traditional approaches in spectroscopic inference.
format Article
id doaj-art-33aefc3c557641cea314e8cf69d62841
institution OA Journals
issn 1538-4357
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj-art-33aefc3c557641cea314e8cf69d628412025-08-20T02:30:47ZengIOP PublishingThe Astrophysical Journal1538-43572025-01-0198516810.3847/1538-4357/adcb47A New Hybrid Machine Learning Method for Stellar Parameter InferenceSujay Shankar0https://orcid.org/0000-0002-2290-6810Michael A. Gully-Santiago1https://orcid.org/0000-0002-4020-3457Caroline V. Morley2https://orcid.org/0000-0002-4404-0456Department of Astronomy, The University of Texas at Austin , Austin, TX 78712, USA ; sujays2001@gmail.comDepartment of Astronomy, The University of Texas at Austin , Austin, TX 78712, USA ; sujays2001@gmail.comDepartment of Astronomy, The University of Texas at Austin , Austin, TX 78712, USA ; sujays2001@gmail.comThe advent of machine learning (ML) is revolutionary to numerous scientific disciplines, with a growing number of examples in astronomical spectroscopic inference, as ML is more powerful than traditional techniques. Here we introduce a hybrid ML (HML) method combining automatic differentiation, interpolation, and Bayesian optimization to infer stellar parameters of stellar spectra. We study T _eff , ${\mathrm{log}}\,(g)$ , and [Fe/H], but this method could be extended to other parameters such as [ α /Fe] (alpha element abundance), C/O (carbon–oxygen ratio), and f _sed (sedimentation efficiency). We first use blase to semiempirically recast spectra into sets of Voigt profiles. blase is run on 1314 synthetic spectra from a rectilinear subset of the PHOENIX model grid ( T _eff : [2300, 12,000] K, ${\mathrm{log}}\,(g)$ : [2, 6], [Fe/H]: [–0.5, 0], λ : [8038, 12849] Å). For 128,723 detected features, we map stellar parameters to spectral line parameters using linear interpolation. This creates the PHOENIX generator, enabling parallelized spectral synthesis. Gaussian process minimization is used to infer stellar parameters by minimizing a rms loss function. Testing 210 noise-free models ( T _eff : [3000, 11,000] K, ${\mathrm{log}}\,(g)$ : [2, 6], [Fe/H]: [−0.5, 0]), we find inference errors: T _eff : 93 K, ${\mathrm{log}}\,(g)$ : 0.24, and [Fe/H]: 0.056 for T _eff  <  7000 K, and T _eff : 347 K, ${\mathrm{log}}\,(g)$ : 0.26, and [Fe/H]: 0.16 for T _eff ≥ 7000 K. We also upload online an archive of blase models of the PHOENIX subset. This proof-of-concept study shows that semiempirical HML is a viable alternative to traditional approaches in spectroscopic inference.https://doi.org/10.3847/1538-4357/adcb47Fundamental parameters of starsStellar atmospheresStellar spectral lines
spellingShingle Sujay Shankar
Michael A. Gully-Santiago
Caroline V. Morley
A New Hybrid Machine Learning Method for Stellar Parameter Inference
The Astrophysical Journal
Fundamental parameters of stars
Stellar atmospheres
Stellar spectral lines
title A New Hybrid Machine Learning Method for Stellar Parameter Inference
title_full A New Hybrid Machine Learning Method for Stellar Parameter Inference
title_fullStr A New Hybrid Machine Learning Method for Stellar Parameter Inference
title_full_unstemmed A New Hybrid Machine Learning Method for Stellar Parameter Inference
title_short A New Hybrid Machine Learning Method for Stellar Parameter Inference
title_sort new hybrid machine learning method for stellar parameter inference
topic Fundamental parameters of stars
Stellar atmospheres
Stellar spectral lines
url https://doi.org/10.3847/1538-4357/adcb47
work_keys_str_mv AT sujayshankar anewhybridmachinelearningmethodforstellarparameterinference
AT michaelagullysantiago anewhybridmachinelearningmethodforstellarparameterinference
AT carolinevmorley anewhybridmachinelearningmethodforstellarparameterinference
AT sujayshankar newhybridmachinelearningmethodforstellarparameterinference
AT michaelagullysantiago newhybridmachinelearningmethodforstellarparameterinference
AT carolinevmorley newhybridmachinelearningmethodforstellarparameterinference