Swin-ReshoUnet: A Seismic Profile Signal Reconstruction Method Integrating Hierarchical Convolution, ORCA Attention, and Residual Channel Attention Mechanism

This study proposes a Swin-ReshoUnet architecture with a three-level enhancement mechanism to address inefficiencies in multi-scale feature extraction and gradient degradation in deep networks for high-precision seismic exploration. The encoder uses a hierarchical convolution module to build a multi...

Full description

Saved in:
Bibliographic Details
Main Authors: Jie Rao, Mingju Chen, Xiaofei Song, Chen Xie, Xueyang Duan, Xiao Hu, Senyuan Li, Xingyue Zhang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/15/8332
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study proposes a Swin-ReshoUnet architecture with a three-level enhancement mechanism to address inefficiencies in multi-scale feature extraction and gradient degradation in deep networks for high-precision seismic exploration. The encoder uses a hierarchical convolution module to build a multi-scale feature pyramid, enhancing cross-scale geological signal representation. The decoder replaces traditional self-attention with ORCA attention to enable global context modeling with lower computational cost. Skip connections integrate a residual channel attention module, mitigating gradient degradation via dual-pooling feature fusion and activation optimization, forming a full-link optimization from low-level feature enhancement to high-level semantic integration. Simulated and real dataset experiments show that at decimation ratios of 0.1–0.5, the method significantly outperforms SwinUnet, TransUnet, etc., in reconstruction performance. Residual signals and F-K spectra verify high-fidelity reconstruction. Despite increased difficulty with higher sparsity, it maintains optimal performance with notable margins, demonstrating strong robustness. The proposed hierarchical feature enhancement and cross-scale attention strategies offer an efficient seismic profile signal reconstruction solution and show generality for migration to complex visual tasks, advancing geophysics-computer vision interdisciplinary innovation.
ISSN:2076-3417