Intelligent Modelling Techniques for Enhanced Thermal Comfort and Energy Optimisation in Residential Buildings
This study examines the utilisation of sophisticated predictive methodologies to enhance the energy efficiency and comfort of residential structures. The ASHRAE Global Thermal Comfort Database II was employed to construct and evaluate machine learning models that were designed to predict thermal com...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/14/3878 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study examines the utilisation of sophisticated predictive methodologies to enhance the energy efficiency and comfort of residential structures. The ASHRAE Global Thermal Comfort Database II was employed to construct and evaluate machine learning models that were designed to predict thermal comfort levels while optimising energy consumption. Air temperature, garment insulation, metabolic rate, air velocity, and humidity were identified as critical comfort determinants. Numerous predictive models were assessed, and XGBoost demonstrated improved performance as a result of hyperparameter optimisation (R<sup>2</sup> = 0.9394, MSE = 0.0224). The study underscores the ability of sophisticated algorithms to clarify the complex relationships between environmental factors and occupant comfort. This sophisticated modelling methodology provides a practical approach to enhancing the efficiency of residential energy consumption while simultaneously ensuring the comfort of the occupants, thereby promoting more sustainable and comfortable living environments. |
|---|---|
| ISSN: | 1996-1073 |