Atomic-Scale Tracking of Topological Defect Motion and Incommensurate Charge Order Melting

Charge order pervades the phase diagrams of quantum materials where it competes with superconducting and magnetic phases, hosts electronic phase transitions and topological defects, and couples to the lattice generating intricate structural distortions. Incommensurate charge order is readily stabili...

Full description

Saved in:
Bibliographic Details
Main Authors: Noah Schnitzer, Berit H. Goodge, Gregory Powers, Jaewook Kim, Sang-Wook Cheong, Ismail El Baggari, Lena F. Kourkoutis
Format: Article
Language:English
Published: American Physical Society 2025-01-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.15.011007
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Charge order pervades the phase diagrams of quantum materials where it competes with superconducting and magnetic phases, hosts electronic phase transitions and topological defects, and couples to the lattice generating intricate structural distortions. Incommensurate charge order is readily stabilized in manganese oxides, where it is associated with anomalous electronic and magnetic properties, but its nanoscale structural inhomogeneity complicates precise characterization and understanding of its relationship with competing phases. Leveraging atomic-resolution variable-temperature cryogenic scanning transmission electron microscopy, we characterize the thermal evolution of charge order as it transforms from its ground state in a model manganite system. We find that mobile networks of discommensurations and dislocations generate phase inhomogeneity and induce global incommensurability in an otherwise lattice-locked modulation. Driving the order to melt at high temperatures, the discommensuration density grows, and regions of order locally decouple from the lattice periodicity.
ISSN:2160-3308