Optimized Carbonization and Kinetic Analysis of Palm Kernel Shell Porous Carbon for Heavy Metal Adsorption

This study explores the use of porous carbon derived from palm kernel shells to adsorb lead ions (Pb2+) from water. Porous carbon was produced by carbonizing palm kernel shells at different temperatures (400, 600, and 800 °C) and was evaluated for its effectiveness in a lead chloride (PbCl2) solutio...

Full description

Saved in:
Bibliographic Details
Main Authors: Mas Ayu Elita Hafizah, Azwar Manaf, Tiara Valency, Andreas Andreas, Maykel Manawan
Format: Article
Language:English
Published: Department of Chemistry, Universitas Gadjah Mada 2025-05-01
Series:Indonesian Journal of Chemistry
Subjects:
Online Access:https://jurnal.ugm.ac.id/ijc/article/view/100714
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the use of porous carbon derived from palm kernel shells to adsorb lead ions (Pb2+) from water. Porous carbon was produced by carbonizing palm kernel shells at different temperatures (400, 600, and 800 °C) and was evaluated for its effectiveness in a lead chloride (PbCl2) solution. The best adsorption rate, reducing Pb2+ concentration by 27.5%, was observed by carbonized material at 800 °C with a 3 h contact time. Kinetic analysis suggested that the process followed a pseudo-second-order model, indicating that chemical adsorption was the dominant mechanism. The adsorption data were best described by the Freundlich isotherm, implying multilayer adsorption on an uneven surface. These findings highlight the efficient and low-cost potential of palm kernel shell-based porous carbon for removing heavy metals from wastewater. Palm kernel shell-derived porous carbon has proven to be a sustainable, cost-effective, and practical solution for mitigating Pb2+ contamination, positioning it as a promising candidate for environmentally friendly water treatment applications.
ISSN:1411-9420
2460-1578