Reliability Evaluation of Multiple DCFP System subject to Shifting Threshold

This paper focuses on system reliability analysis with dependent competing failure process due to soft failure and hard failure. Some new probabilistic methods based on cumulative shock model and nonlinear Wiener process under different shifting thresholds situation are obtained. Considering that no...

Full description

Saved in:
Bibliographic Details
Main Authors: Chunping Li, Huibing Hao, Fang Xu, Guotao Zhao
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/9206239
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper focuses on system reliability analysis with dependent competing failure process due to soft failure and hard failure. Some new probabilistic methods based on cumulative shock model and nonlinear Wiener process under different shifting thresholds situation are obtained. Considering that nonlinearity exists extensively in practice, the continuous soft failure process is governed by random effected nonlinear Wiener process. Firstly, reliability evaluation models for hard failure and soft failure are obtained under the cumulative shock, respectively. Furthermore, some system reliability models under different shifting thresholds situation are studied, in which failure threshold will decrease after a certain number of shocks. A real numerical example about fatigue crack growth dataset is carried out to demonstrate the proposed procedure. Numerical results indicate that both random shocks and shifting threshold have significant effect on system reliability. Finally, some sensitivity analysis are also been given.
ISSN:1070-9622
1875-9203