Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional Methods
Robotic systems have been shown to improve unicompartmental knee arthroplasty (UKA) component placement accuracy compared to conventional methods when used by experienced surgeons. We aimed to determine whether inexperienced UKA surgeons can position components accurately using robotic assistance wh...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2013-01-01
|
| Series: | Advances in Orthopedics |
| Online Access: | http://dx.doi.org/10.1155/2013/481039 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849306457127780352 |
|---|---|
| author | Monil Karia Milad Masjedi Barry Andrews Zahra Jaffry Justin Cobb |
| author_facet | Monil Karia Milad Masjedi Barry Andrews Zahra Jaffry Justin Cobb |
| author_sort | Monil Karia |
| collection | DOAJ |
| description | Robotic systems have been shown to improve unicompartmental knee arthroplasty (UKA) component placement accuracy compared to conventional methods when used by experienced surgeons. We aimed to determine whether inexperienced UKA surgeons can position components accurately using robotic assistance when compared to conventional methods and to demonstrate the effect repetition has on accuracy. Sixteen surgeons were randomised to an active constraint robot or conventional group performing three UKAs over three weeks. Implanted component positions and orientations were compared to planned component positions in six degrees of freedom for both femoral and tibial components. Mean procedure time decreased for both robot (37.5 mins to 25.7 mins) (P=0.002) and conventional (33.8 mins to 21.0 mins) (P=0.002) groups by attempt three indicating the presence of a learning curve; however, neither group demonstrated changes in accuracy. Mean compound rotational and translational errors were lower in the robot group compared to the conventional group for both components at all attempts for which rotational error differences were significant at every attempt. The conventional group’s positioning remained inaccurate even with repeated attempts although procedure time improved. In comparison, by limiting inaccuracies inherent in conventional equipment, robotic assistance enabled surgeons to achieve precision and accuracy when positioning UKA components irrespective of their experience. |
| format | Article |
| id | doaj-art-31ede540e9cf469d8a0871ed334a85e1 |
| institution | Kabale University |
| issn | 2090-3464 2090-3472 |
| language | English |
| publishDate | 2013-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Advances in Orthopedics |
| spelling | doaj-art-31ede540e9cf469d8a0871ed334a85e12025-08-20T03:55:03ZengWileyAdvances in Orthopedics2090-34642090-34722013-01-01201310.1155/2013/481039481039Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional MethodsMonil Karia0Milad Masjedi1Barry Andrews2Zahra Jaffry3Justin Cobb4MSK Lab, Department of Orthopaedics, Charing Cross Hospital, Imperial College London, Fulham Place Road, London W6 8RF, UKMSK Lab, Department of Orthopaedics, Charing Cross Hospital, Imperial College London, Fulham Place Road, London W6 8RF, UKMSK Lab, Department of Orthopaedics, Charing Cross Hospital, Imperial College London, Fulham Place Road, London W6 8RF, UKMSK Lab, Department of Orthopaedics, Charing Cross Hospital, Imperial College London, Fulham Place Road, London W6 8RF, UKMSK Lab, Department of Orthopaedics, Charing Cross Hospital, Imperial College London, Fulham Place Road, London W6 8RF, UKRobotic systems have been shown to improve unicompartmental knee arthroplasty (UKA) component placement accuracy compared to conventional methods when used by experienced surgeons. We aimed to determine whether inexperienced UKA surgeons can position components accurately using robotic assistance when compared to conventional methods and to demonstrate the effect repetition has on accuracy. Sixteen surgeons were randomised to an active constraint robot or conventional group performing three UKAs over three weeks. Implanted component positions and orientations were compared to planned component positions in six degrees of freedom for both femoral and tibial components. Mean procedure time decreased for both robot (37.5 mins to 25.7 mins) (P=0.002) and conventional (33.8 mins to 21.0 mins) (P=0.002) groups by attempt three indicating the presence of a learning curve; however, neither group demonstrated changes in accuracy. Mean compound rotational and translational errors were lower in the robot group compared to the conventional group for both components at all attempts for which rotational error differences were significant at every attempt. The conventional group’s positioning remained inaccurate even with repeated attempts although procedure time improved. In comparison, by limiting inaccuracies inherent in conventional equipment, robotic assistance enabled surgeons to achieve precision and accuracy when positioning UKA components irrespective of their experience.http://dx.doi.org/10.1155/2013/481039 |
| spellingShingle | Monil Karia Milad Masjedi Barry Andrews Zahra Jaffry Justin Cobb Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional Methods Advances in Orthopedics |
| title | Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional Methods |
| title_full | Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional Methods |
| title_fullStr | Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional Methods |
| title_full_unstemmed | Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional Methods |
| title_short | Robotic Assistance Enables Inexperienced Surgeons to Perform Unicompartmental Knee Arthroplasties on Dry Bone Models with Accuracy Superior to Conventional Methods |
| title_sort | robotic assistance enables inexperienced surgeons to perform unicompartmental knee arthroplasties on dry bone models with accuracy superior to conventional methods |
| url | http://dx.doi.org/10.1155/2013/481039 |
| work_keys_str_mv | AT monilkaria roboticassistanceenablesinexperiencedsurgeonstoperformunicompartmentalkneearthroplastiesondrybonemodelswithaccuracysuperiortoconventionalmethods AT miladmasjedi roboticassistanceenablesinexperiencedsurgeonstoperformunicompartmentalkneearthroplastiesondrybonemodelswithaccuracysuperiortoconventionalmethods AT barryandrews roboticassistanceenablesinexperiencedsurgeonstoperformunicompartmentalkneearthroplastiesondrybonemodelswithaccuracysuperiortoconventionalmethods AT zahrajaffry roboticassistanceenablesinexperiencedsurgeonstoperformunicompartmentalkneearthroplastiesondrybonemodelswithaccuracysuperiortoconventionalmethods AT justincobb roboticassistanceenablesinexperiencedsurgeonstoperformunicompartmentalkneearthroplastiesondrybonemodelswithaccuracysuperiortoconventionalmethods |