Pectoral Fin-Assisted Braking and Agile Turning: A Biomimetic Approach to Improve Underwater Robot Maneuverability

The integration of biomimetic pectoral fins into robotic fish presents a promising approach to enhancing maneuverability, stability, and braking efficiency in underwater robotics. This study investigates a 1-DOF (degree of freedom) pectoral fin mechanism integrated into the SpineWave robotic fish. T...

Full description

Saved in:
Bibliographic Details
Main Authors: Qu He, Yunpeng Zhu, Weikun Li, Weicheng Cui, Dixia Fan
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/7/1295
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The integration of biomimetic pectoral fins into robotic fish presents a promising approach to enhancing maneuverability, stability, and braking efficiency in underwater robotics. This study investigates a 1-DOF (degree of freedom) pectoral fin mechanism integrated into the SpineWave robotic fish. Through force measurements and particle image velocimetry (PIV), we optimized control parameters to improve braking and turning performances. The results show a 50% reduction in stopping distance, significantly enhancing agility and control. The fin-assisted braking and turning modes enable precise movements, making this approach valuable for autonomous underwater vehicles. This research lays the groundwork for adaptive fin designs and real-time control strategies, with applications in underwater exploration, environmental monitoring, and search-and-rescue operations.
ISSN:2077-1312