Phase Noise Cancelation Based on Polarization Modulation for Massive MIMO-OFDM Systems

In massive multiple-input multiple-output (MIMO) systems, phase noise introduced by oscillators can cause severe performance loss. It leads to common phase error and intercarrier interference in massive MIMO-OFDM uplink. To solve the issue, a novel phase noise cancelation scheme based on polarizatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Yao Nie, Chunyan Feng, Huan Wu, Fangfang Liu, Caili Guo, Maosheng Fu
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2019/6574827
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In massive multiple-input multiple-output (MIMO) systems, phase noise introduced by oscillators can cause severe performance loss. It leads to common phase error and intercarrier interference in massive MIMO-OFDM uplink. To solve the issue, a novel phase noise cancelation scheme based on polarization modulation for the massive MIMO-OFDM system is proposed. We first introduce the polarization modulation (PM) exploited in massive MIMO-OFDM uplink. Then, by exploiting the zero-forcing detection, we analyze the asymptotically ICI and the distribution of the transformed noise under different XPD values. Furthermore, we demonstrate that phase noise can be asymptotically canceled and only the transformed additive white Gaussian noise exists as the number of antennas at the base station is very large. Moreover, we derive the instantaneous signal-to-noise ratio (SNR) on each subcarrier and analyze the ergodic capacity. To increase the ergodic capacity performance further, a joint modulation scheme combining the PM and 2PSK is proposed and the ergodic capacity performance of the joint modulation is discussed. The simulation results show that the proposed scheme can effectively mitigate phase noise and achieve a higher ergodic capacity.
ISSN:1687-5869
1687-5877