The Intersection Probability of Brownian Motion and SLEκ
By using excursion measure Poisson kernel method, we obtain a second-order differential equation of the intersection probability of Brownian motion and SLEκ. Moreover, we find a transformation such that the second-order differential equation transforms into a hypergeometric differential equation. Th...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2015-01-01
|
| Series: | Advances in Mathematical Physics |
| Online Access: | http://dx.doi.org/10.1155/2015/627423 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | By using excursion measure Poisson kernel method, we obtain a second-order differential equation of the intersection probability of Brownian motion and SLEκ. Moreover, we find a transformation such that the second-order differential equation transforms into a hypergeometric differential equation. Then, by solving the hypergeometric differential equation, we obtain the explicit formula of the intersection probability for the trace of the chordal SLEκ and planar Brownian motion started from distinct points in an upper half-plane H-. |
|---|---|
| ISSN: | 1687-9120 1687-9139 |