An in- vitro measurement for the toxicity of peptides inhibit hexokinase II in breast cancer cell lines

Abstract The role of the enzyme hexokinase 2 in many cancers has been identified through increased glycolysis or binding to the pro-apoptotic channel located in the outer mitochondrial membrane, (VDCA1) and protein kinase (MTOR). To prevent the cancer-causing pathways of this enzyme, it is possible...

Full description

Saved in:
Bibliographic Details
Main Authors: Faranak Karamifard, Ali Dadbinpour, Mahta Mazaheri
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-94858-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The role of the enzyme hexokinase 2 in many cancers has been identified through increased glycolysis or binding to the pro-apoptotic channel located in the outer mitochondrial membrane, (VDCA1) and protein kinase (MTOR). To prevent the cancer-causing pathways of this enzyme, it is possible to disrupt the interaction of hexokinase subunits. Peptides can be utilized to interfere with the interaction of subunits by binding to amino acids that contribute to enzyme dimerization. Nowadays, peptides have become a suitable option for the treatment of various diseases, especially cancer, due to their small size, ease of synthesis, and ability to penetrate the tumor. This study examined the toxic effect of peptides that inhibit enzyme interaction on tumorigenic MCF-7 and MDA-MB-231 and non-tumorigenic MCF10A cell lines through MTT analysis and flow cytometry to determine cell apoptosis. The MCF-7 line experienced a significant decrease in cell proliferation with both peptides. The RYALFSS peptide caused a decrease in the number of MDA-MB-231 cells, but the EKGLGATTHPTAAVKML peptide caused a significant increase. There was no significant increase or decrease in the MCF10A cell line. The study’s finding indicate that peptides can serve as a tool to prevent the proliferation of carcinogenic cells.
ISSN:2045-2322