Nanostructural Deformation Analysis of Calcium Silicate Hydrate in Portland Cement Paste by Atomic Pair Distribution Function

The deformation of nanostructure of calcium silicate hydrate (C-S-H) in Portland cement (PC) paste under compression was characterized by the atomic pair distribution function (PDF), measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a s...

Full description

Saved in:
Bibliographic Details
Main Authors: Hiroshi Suzuki, Sungchul Bae, Manabu Kanematsu
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2016/8936084
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The deformation of nanostructure of calcium silicate hydrate (C-S-H) in Portland cement (PC) paste under compression was characterized by the atomic pair distribution function (PDF), measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a short-range order below 2.0 nm, close to the size of the C-S-H globule, while the deformation for a long-range order was similar to that of a calcium hydroxide phase measured by Bragg peak shift. The compressive deformation of the C-S-H nanostructure was comprised of three stages with different interactions between globules. This behavior would originate from the granular nature of C-S-H, which deforms with increasing packing density by slipping the interfaces between globules, rearranging the overall C-S-H nanostructure. This new approach will lead to increasing applications of the PDF technique to understand the deformation mechanism of C-S-H in PC-based materials.
ISSN:1687-8434
1687-8442