Geometric characterization of generalized Hajłasz-Sobolev embedding domains

In this article, the authors study the embedding properties of Hajłasz-Sobolev spaces with generalized smoothness on Euclidean domains, whose regularity is described via a smoothness weight function ϕ:[0,∞)→[0,∞)\phi :\left[0,\infty )\to \left[0,\infty ). Given any bounded domain with the slice prop...

Full description

Saved in:
Bibliographic Details
Main Authors: Li Ziwei, Yang Dachun, Yuan Wen
Format: Article
Language:English
Published: De Gruyter 2025-03-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2025-0077
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850183831725801472
author Li Ziwei
Yang Dachun
Yuan Wen
author_facet Li Ziwei
Yang Dachun
Yuan Wen
author_sort Li Ziwei
collection DOAJ
description In this article, the authors study the embedding properties of Hajłasz-Sobolev spaces with generalized smoothness on Euclidean domains, whose regularity is described via a smoothness weight function ϕ:[0,∞)→[0,∞)\phi :\left[0,\infty )\to \left[0,\infty ). Given any bounded domain with the slice property, the authors prove that it is a generalized Hajłasz-Sobolev embedding domain if and only if it is a generalized FF-weak cigar domain, where FF is a modulus of continuity related to the weight function ϕ\phi of the generalized Hajłasz-Sobolev spaces under consideration. Comparing with the classical Hajłasz-Soblev spaces, one main difficulty in dealing with generalized Hajłasz-Sobolev spaces lies in that both its smoothness weight function ϕ\phi and the related modulus of continuity FF have no explicit expression. To overcome this, the authors introduce and use some key indices to accurately describe the increasing or the decreasing behavior of both ϕ\phi and FF. Besides the classical Hajłasz-Sobolev spaces, this result can be applied to many other nontrivial spaces such as Hajłasz-Sobolev spaces with logarithmic smoothness and is of wide generality.
format Article
id doaj-art-314644711dcf4783a2b4e967db72efc2
institution OA Journals
issn 2191-950X
language English
publishDate 2025-03-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj-art-314644711dcf4783a2b4e967db72efc22025-08-20T02:17:13ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2025-03-0114124125710.1515/anona-2025-0077Geometric characterization of generalized Hajłasz-Sobolev embedding domainsLi Ziwei0Yang Dachun1Yuan Wen2Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, The People’s Republic of ChinaLaboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, The People’s Republic of ChinaLaboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, The People’s Republic of ChinaIn this article, the authors study the embedding properties of Hajłasz-Sobolev spaces with generalized smoothness on Euclidean domains, whose regularity is described via a smoothness weight function ϕ:[0,∞)→[0,∞)\phi :\left[0,\infty )\to \left[0,\infty ). Given any bounded domain with the slice property, the authors prove that it is a generalized Hajłasz-Sobolev embedding domain if and only if it is a generalized FF-weak cigar domain, where FF is a modulus of continuity related to the weight function ϕ\phi of the generalized Hajłasz-Sobolev spaces under consideration. Comparing with the classical Hajłasz-Soblev spaces, one main difficulty in dealing with generalized Hajłasz-Sobolev spaces lies in that both its smoothness weight function ϕ\phi and the related modulus of continuity FF have no explicit expression. To overcome this, the authors introduce and use some key indices to accurately describe the increasing or the decreasing behavior of both ϕ\phi and FF. Besides the classical Hajłasz-Sobolev spaces, this result can be applied to many other nontrivial spaces such as Hajłasz-Sobolev spaces with logarithmic smoothness and is of wide generality.https://doi.org/10.1515/anona-2025-0077hajłasz-sobolev embeddinggeneralized smoothnesscigar domainself-improvingprimary 46e35secondary 46e3642b3530l99
spellingShingle Li Ziwei
Yang Dachun
Yuan Wen
Geometric characterization of generalized Hajłasz-Sobolev embedding domains
Advances in Nonlinear Analysis
hajłasz-sobolev embedding
generalized smoothness
cigar domain
self-improving
primary 46e35
secondary 46e36
42b35
30l99
title Geometric characterization of generalized Hajłasz-Sobolev embedding domains
title_full Geometric characterization of generalized Hajłasz-Sobolev embedding domains
title_fullStr Geometric characterization of generalized Hajłasz-Sobolev embedding domains
title_full_unstemmed Geometric characterization of generalized Hajłasz-Sobolev embedding domains
title_short Geometric characterization of generalized Hajłasz-Sobolev embedding domains
title_sort geometric characterization of generalized hajlasz sobolev embedding domains
topic hajłasz-sobolev embedding
generalized smoothness
cigar domain
self-improving
primary 46e35
secondary 46e36
42b35
30l99
url https://doi.org/10.1515/anona-2025-0077
work_keys_str_mv AT liziwei geometriccharacterizationofgeneralizedhajłaszsobolevembeddingdomains
AT yangdachun geometriccharacterizationofgeneralizedhajłaszsobolevembeddingdomains
AT yuanwen geometriccharacterizationofgeneralizedhajłaszsobolevembeddingdomains