Computing Wiener and Hyper-Wiener Indices of Zero-Divisor Graph of ℤℊ3×ℤI1I2
Let S=ℤℊ3×ℤI1I2 be a commutative ring where ℊ,I1 and I2 are positive prime integers with I1≠I2. The zero-divisor graph assigned to S is an undirected graph, denoted as YS with vertex set V(Y(S)) consisting of all Zero-divisor of the ring S and for any c, d ∈V(Y (S)), cd∈EYS if and only if cd =0. A t...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2022-01-01
|
| Series: | Journal of Function Spaces |
| Online Access: | http://dx.doi.org/10.1155/2022/2046173 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Let S=ℤℊ3×ℤI1I2 be a commutative ring where ℊ,I1 and I2 are positive prime integers with I1≠I2. The zero-divisor graph assigned to S is an undirected graph, denoted as YS with vertex set V(Y(S)) consisting of all Zero-divisor of the ring S and for any c, d ∈V(Y (S)), cd∈EYS if and only if cd =0. A topological index/descriptor is described as a topological-invariant quantity that transforms a molecular graph into a mathematical real number. In this paper, we have computed distance-based polynomials of YR i-e Hosoya polynomial, Harary polynomial, and the topological indices related to these polynomials namely Wiener index, and Hyper-Wiener index. |
|---|---|
| ISSN: | 2314-8888 |