Al2O3/Al hybrid nanolaminates with superior toughness, strength and ductility

Abstract Amorphous alumina is hard but brittle like all ceramic type materials which affects durability under impact or scratch. Here we show that alumina layers below 100 nm thickness when stacked with aluminum interlayers exhibit exceptional performances including toughness equal to 300 J.m−2 dete...

Full description

Saved in:
Bibliographic Details
Main Authors: Paul Baral, Sahar Jaddi, Hui Wang, Andrey Orekhov, Nicolas Gauquelin, Alireza Bagherpour, Frederik Van Loock, Michaël Coulombier, Audrey Favache, Morgan Rusinowicz, Johan Verbeeck, Stéphane Lucas, Jean-Pierre Raskin, Hosni Idrissi, Thomas Pardoen
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56512-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823861792035569664
author Paul Baral
Sahar Jaddi
Hui Wang
Andrey Orekhov
Nicolas Gauquelin
Alireza Bagherpour
Frederik Van Loock
Michaël Coulombier
Audrey Favache
Morgan Rusinowicz
Johan Verbeeck
Stéphane Lucas
Jean-Pierre Raskin
Hosni Idrissi
Thomas Pardoen
author_facet Paul Baral
Sahar Jaddi
Hui Wang
Andrey Orekhov
Nicolas Gauquelin
Alireza Bagherpour
Frederik Van Loock
Michaël Coulombier
Audrey Favache
Morgan Rusinowicz
Johan Verbeeck
Stéphane Lucas
Jean-Pierre Raskin
Hosni Idrissi
Thomas Pardoen
author_sort Paul Baral
collection DOAJ
description Abstract Amorphous alumina is hard but brittle like all ceramic type materials which affects durability under impact or scratch. Here we show that alumina layers below 100 nm thickness when stacked with aluminum interlayers exhibit exceptional performances including toughness equal to 300 J.m−2 determined by on chip nanomechanics. This is almost two orders of magnitude higher than bulk alumina and higher than any other thin hard coatings. In addition, a hardness above 8 GPa combines with a fracture strain above 5%. The origin of this superior set of properties is unravelled via in-situ TEM and mechanical models. The combination of constrained alumina layers with ductile behavior, strong “accommodating” interfaces, giant shear deformability of Al layers, and plasticity-controlled crack shielding cooperate to stabilize deformation, dissipate energy and arrest cracks. These performances unlock several options of applications of Al2O3 in which brittleness under contacts prevents benefiting from remarkable functional properties and chemical stability.
format Article
id doaj-art-313476e38d8c42e9b6dbe5e8348d8ed8
institution Kabale University
issn 2041-1723
language English
publishDate 2025-02-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-313476e38d8c42e9b6dbe5e8348d8ed82025-02-09T12:45:04ZengNature PortfolioNature Communications2041-17232025-02-011611910.1038/s41467-025-56512-7Al2O3/Al hybrid nanolaminates with superior toughness, strength and ductilityPaul Baral0Sahar Jaddi1Hui Wang2Andrey Orekhov3Nicolas Gauquelin4Alireza Bagherpour5Frederik Van Loock6Michaël Coulombier7Audrey Favache8Morgan Rusinowicz9Johan Verbeeck10Stéphane Lucas11Jean-Pierre Raskin12Hosni Idrissi13Thomas Pardoen14Mines Saint Etienne, CNRS UMR 5307 LGF, Centre SMSInstitute of Mechanics, Materials and Civil Engineering (IMMC), UCLouvainInstitute of Mechanics, Materials and Civil Engineering (IMMC), UCLouvainEMAT, University of AntwerpEMAT, University of AntwerpLaboratoire d’Analyse par Réaction Nucléaires (LARN), Namur Institute of Structured Matter (NISM), University of NamurTU Eindhoven, Processing and Performance of Materials Group, Mechanical Engineering, Groene LoperInstitute of Mechanics, Materials and Civil Engineering (IMMC), UCLouvainInstitute of Mechanics, Materials and Civil Engineering (IMMC), UCLouvainMines Saint Etienne, CNRS UMR 5307 LGF, Centre SMSEMAT, University of AntwerpLaboratoire d’Analyse par Réaction Nucléaires (LARN), Namur Institute of Structured Matter (NISM), University of NamurInstitute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvainInstitute of Mechanics, Materials and Civil Engineering (IMMC), UCLouvainInstitute of Mechanics, Materials and Civil Engineering (IMMC), UCLouvainAbstract Amorphous alumina is hard but brittle like all ceramic type materials which affects durability under impact or scratch. Here we show that alumina layers below 100 nm thickness when stacked with aluminum interlayers exhibit exceptional performances including toughness equal to 300 J.m−2 determined by on chip nanomechanics. This is almost two orders of magnitude higher than bulk alumina and higher than any other thin hard coatings. In addition, a hardness above 8 GPa combines with a fracture strain above 5%. The origin of this superior set of properties is unravelled via in-situ TEM and mechanical models. The combination of constrained alumina layers with ductile behavior, strong “accommodating” interfaces, giant shear deformability of Al layers, and plasticity-controlled crack shielding cooperate to stabilize deformation, dissipate energy and arrest cracks. These performances unlock several options of applications of Al2O3 in which brittleness under contacts prevents benefiting from remarkable functional properties and chemical stability.https://doi.org/10.1038/s41467-025-56512-7
spellingShingle Paul Baral
Sahar Jaddi
Hui Wang
Andrey Orekhov
Nicolas Gauquelin
Alireza Bagherpour
Frederik Van Loock
Michaël Coulombier
Audrey Favache
Morgan Rusinowicz
Johan Verbeeck
Stéphane Lucas
Jean-Pierre Raskin
Hosni Idrissi
Thomas Pardoen
Al2O3/Al hybrid nanolaminates with superior toughness, strength and ductility
Nature Communications
title Al2O3/Al hybrid nanolaminates with superior toughness, strength and ductility
title_full Al2O3/Al hybrid nanolaminates with superior toughness, strength and ductility
title_fullStr Al2O3/Al hybrid nanolaminates with superior toughness, strength and ductility
title_full_unstemmed Al2O3/Al hybrid nanolaminates with superior toughness, strength and ductility
title_short Al2O3/Al hybrid nanolaminates with superior toughness, strength and ductility
title_sort al2o3 al hybrid nanolaminates with superior toughness strength and ductility
url https://doi.org/10.1038/s41467-025-56512-7
work_keys_str_mv AT paulbaral al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT saharjaddi al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT huiwang al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT andreyorekhov al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT nicolasgauquelin al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT alirezabagherpour al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT frederikvanloock al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT michaelcoulombier al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT audreyfavache al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT morganrusinowicz al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT johanverbeeck al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT stephanelucas al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT jeanpierreraskin al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT hosniidrissi al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility
AT thomaspardoen al2o3alhybridnanolaminateswithsuperiortoughnessstrengthandductility