Effect of elastomer materials on the time response characteristics of MEMS tactile sensors

We report on the effect of elastomer materials on the time response characteristics of tactile sensors using microcantilevers embedded in the elastomer. Our previous work has shown that different electrical time response characteristics of the sensor output can be obtained using piezoelectric or res...

Full description

Saved in:
Bibliographic Details
Main Authors: Yusaku AIBA, Ryusuke MITOBE, Akiyoshi KUSANO, Akiomi USHIDA, Takashi ABE, Masayuki SOHGAWA
Format: Article
Language:English
Published: The Japan Society of Mechanical Engineers 2025-06-01
Series:Mechanical Engineering Journal
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/mej/12/4/12_25-00098/_pdf/-char/en
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the effect of elastomer materials on the time response characteristics of tactile sensors using microcantilevers embedded in the elastomer. Our previous work has shown that different electrical time response characteristics of the sensor output can be obtained using piezoelectric or resistive elements. In this paper, focusing on mechanical time response control, we evaluated the response differences based on the viscoelasticity of the elastomer used to embed the microcantilever as a sensing element for tactile sensors. The microcantilever embedded in an acrylic elastomer, which has higher viscoelasticity than the previously used PDMS, exhibits nonlinear responses that are significantly dependent on the rate of deformation. Furthermore, we found that even when the elastomer used to embed the microcantilever is the same material, the time response characteristics vary depending on the material of the contact surface with the object.
ISSN:2187-9745