Numerical Simulation on Residual Stress Field of Flat-Topped Laser Oblique Shocking of Ni-Based Alloy GH4169
This paper is based on laser shock peening (LSP) system with a flat-topped beam, using robot simulation software to determine the oblique shock angle of different areas of a certain turbine disk mortise. Three-dimensional finite element analysis was used to study residual stress field of Ni-based al...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Advances in Materials Science and Engineering |
| Online Access: | http://dx.doi.org/10.1155/2020/8824824 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper is based on laser shock peening (LSP) system with a flat-topped beam, using robot simulation software to determine the oblique shock angle of different areas of a certain turbine disk mortise. Three-dimensional finite element analysis was used to study residual stress field of Ni-based alloy GH4169 under flat-topped laser oblique shocking. The effects of different laser energy and different shocking number on residual stress field of Ni-based alloy GH4169 of LSP were studied. Three-dimensional finite element analysis used super-Gaussian beam distribution to construct spatial distribution model of shock wave induced by LSP. The simulation results were in good agreement with the experimental results. The research results will provide a theoretical basis for LSP of certain turbine disk mortise. |
|---|---|
| ISSN: | 1687-8434 1687-8442 |